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1 “Smooth” means that all derivatives of
the function exists. We won’t ever be in-
terested in subtleties involving continuity
and differentiability in this course.

2 This is a cause of endless confusion, so
pay attention! From the perspective of f ,
y and y′ are independent variables.

3 i.e. with ε2 and higher powers of ε all
being zero.

1 Calculus of Variations
References: Stone & Goldbart (SG) Chapter 1; Byron & Fuller (BF) Chapter 2;
Arfken, Weber & Harris (AWH) Chapter 22.

Finding where the minimum or maximum value of some quantity occurs is
an extremely common task. For example, you might want to know where the
highest point on a map is, or when you had the highest heartrate throughout the
day. Mathematically, we have a function f(x), and we want to find the value
of x which maximizes or minimizes f(x). To do so, for a differentiable function
f , we simply take the derivative and set it to zero

f ′(x) = 0 (1.1)

and solve for x to find the stationary points of the function.
Often though, we run into problems where we want to find the function at

which the minimum or maximum value of some function occurs. Some examples
include:

1. What is the shortest path to take between points A and B?

2. What closed curve of fixed length encloses the maximum possible area?

3. What form does a hanging heavy chain of fixed length take, so as to
minimize its potential energy?

To answer these questions mathematically, we need an object called a functional
J [y], which maps smooth1 functions y (e.g. a path, a curve) to a real number
(e.g. a distance, an area). This is just another map, like a function is. But now,
we want to develop the tools required to define a functional derivative such
that setting

δJ

δy(x) = 0 (1.2)

will allow us to find a function y(x) (e.g. a path, a curve) that maximizes J [y]
(e.g. a distance, an area).

1.1 Functionals

What does a functional look like? For our purposes, we will be dealing with
functionals that have the following form:

J [y] =
∫ x2

x1

dx f(x, y, y′, y′′, · · · , y(n)) , (1.3)

where f is a function of the real numbers x, y, y′ · · · , independently.2 We call
these kinds of functionals local in x. As you can see, J takes in a function
y, performs an integral, and returns a real number, which is exactly what a
functional should do.

1.1.1 The functional derivative

Let us work out the functional derivative for the case where

J [y] =
∫ x2

x1

dx f(x, y, y′) . (1.4)

To do this, suppose we make an infinitesimal shift y(x) → y(x)+εη(x), where ε
is an infinitesimally small constant,3 and η(x) is some arbitrary function. Then
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4 For example, if we are interested in find-
ing the path with the short distance be-
tween two fixed points.

Figure 1: A discretized visualization of varying
over functions. (HL: To be completed, but not
difficult to imagine!)

5 In this picture, a choice of the function
y is a point in an uncountably infinite di-
mensional space, and ϵη is a step in some
arbitrary direction, and J is function that
returns a real number at every point in
this space.

the shift in J is

δJ = J [y + εη] − J [y] =
∫ x2

x1

dx [f(x, y + εη, y′ + εη′) − f(x, y, y′)] . (1.5)

Since ε is an infinitesimal quantity, we can perform a Taylor expansion up to
first order about y and y′ to find

δJ =
∫ x2

x1

dx

[
εη
∂f

∂y
+ εη′ ∂f

∂y′

]
. (1.6)

To make further progress, we integrate the second term by parts, giving

δJ =
[
εη
∂f

∂y′

]x2

x1

+
∫ x2

x1

dx

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
εη . (1.7)

We are frequently—but not always!—concerned with finding functions of y with
fixed endpoints;4 in that case, η(x1) = η(x2) = 0, and the boundary terms in
the first term on the right vanishes, leaving

δJ =
∫ x2

x1

dx

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
εη . (1.8)

This can be written suggestively as

δJ =
∫ x2

x1

dx δy(x)
(

δJ

δy(x)

)
, (1.9)

where δy(x) ≡ εη(x), and

δJ

δy(x) ≡ ∂f

∂y
− d

dx

(
∂f

∂y′

)
(1.10)

is the functional derivative of J with respect to y(x).
To aid our understanding, it can be helpful to think discretely. We can

discretize x between x1 and x2 into N discrete steps, so that the function y
takes up values yi = y(xi), where i = 1, 2 · · · , N . A choice of the function y
corresponds in this discrete picture to a choice of {yi}, which is a single point
in an N -dimensional space. Fig. 1 has a visualization of this. At every point
in this N -dimensional space, we can assign a value to J . The small variation
εη can likewise be discretized, so that δyi = εηi, which can be thought of as a
step in a particular direction in the same N -dimensional space. In this discrete
picture,

δJ =
N∑

i=1

∂J

∂yi
δyi , (1.11)

just as one might expect for a function J defined in the N -dimensional space
indexed by yi. In the continuous limit, we need to trade the summation over
discrete i to an integral over the continuous label x, leading to Eq. (1.9).5

1.1.2 The Euler-Lagrange equation

Now, to find the stationary points—maxima, minima or saddle points—of J ,
we want to set δJ = 0 for any arbitrary variation εη, just like for a function g
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6 We can prove that this is true rigor-
ously, given various conditions on η and
f . This is often known as the funda-
mental lemma of the calculus of vari-
ations. For further discussion, see SG
1.2.2 and Wikipedia.

x1 x2

y(x)

Figure 2: Soap film between two rings, centered
at x1 and x2, with radii y(x1) and y(x2).

on Rn, we want δg to be zero for a step in any direction at a stationary point.
Referring to Eq. (1.8), we require∫ x2

x1

dx

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
εη = 0 . (1.12)

Since this applies for any η(x), the term in the square brackets [· · · ] must
vanish.6 we must have

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (1.13)

for a stationary point for J . This is the famous Euler-Lagrange equation.
Through derivations similar to what we saw above, we can get generalized

Euler-Lagrange equations for more complicated versions of J . If J depends on
more than one function yi, for example, the stationary points are given by

∂f

∂yi
− d

dx

(
∂f

∂y′
i

)
= 0 , (1.14)

which is one equation for each variable yi. If on the other hand, f depends
on higher derivatives y′′, y′′′ and so on, then the generalized Euler-Lagrange
equation we get is

∂f

∂y
− d

dx

(
∂f

∂y′

)
+ d2

dx2

(
∂f

∂y′′

)
− d3

dx3

(
∂f

∂y′′′

)
+ · · · = 0 . (1.15)

1.1.3 Applications

Time to apply what we’ve learnt! We’ll apply the Euler-Lagrange equations to
two examples.

1.1.3.1 Soap film supported by a pair of coaxial rings. Consider Fig. 2,
where a pair of co-axial rings support a soap film. The energy associated with
the configuration is directly proportional to the area, and hence the soap film
tends to minimize this energy by minimizing its area, subject to the constraint
that the soap film has to end on the rings at either end. The area of associated
with a segment of the film of width dx is

dA = 2πy(x)
√
dx2 + dy2 = 2πy(x)

√
1 + y′2 dx , (1.16)

and so the functional that we want to minimize is

J [y] =
∫ x2

x1

dx f(y, y′) , f(y, y′) ≡ y
√

1 + y′2 , (1.17)

with the endpoint values fixed at y(x1) and y(x2). The minimum for this
functional can therefore be found by applying the Euler-Lagrange equations.
The partial derivatives that we need for the Euler-Lagrange equation are

∂f

∂y
=
√

1 + y′2 ,
∂f

∂y′ = yy′√
1 + y′2

, (1.18)
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x

y

(0, 0)

(a, b)

Figure 3: Possible shapes of a wire for a fric-
tionless bead to travel from the origin (0, 0) to a
point (a, b).

and so the Euler-Lagrange equation says that the minimal surface area profile
y(x) must satisfy

√
1 + y′2 − d

dx

(
yy′√

1 + y′2

)
= 0

=⇒
√

1 + y′2 − y′2√
1 + y′2

− yy′′√
1 + y′2

+ yy′2y′′

(1 + y′2)3/2 = 0

=⇒ 1√
1 + y′2

− yy′′

(1 + y′2)3/2 = 0 . (1.19)

This differential equation looks difficult to solve, but fortunately there’s a neat
little trick to do so. Multiplying by y′ on both sides gives

0 = y′√
1 + y′2

− yy′y′′

(1 + y′2)3/2 = d

dx

(
y√

1 + y′2

)
. (1.20)

We’ll return to how we knew this trick would work later on. In the mean time,
the solution is

y√
1 + y′2

= κ (1.21)

for some constant κ. Rewriting this as

dy

dx
=
√
y2

κ2 − 1 =⇒
∫

dy√
y2/κ2 − 1

=
∫
dx , (1.22)

we can integrate this first-order ordinary differential equation by substituting
y = κ cosh t and dy = κ sinh t to find

κ

∫
dt =

∫
dx =⇒ κt = x+ C =⇒ y = κ cosh

(
x+ C

κ

)
(1.23)

for some constants κ and C. These can be determined by enforcing the two
boundary conditions—the radii of the two rings, y(x1) and y(x2).

1.1.3.2 The brachistochrone The next problem we will consider is a fa-
mous one, posed by Johann Bernoulli in 1696. What shape should a wire with
endpoints (0, 0) and (a, b) take, in order that a frictionless bead will slide from
rest down the wire in the shortest possible time?

First, the total time T taken down a given path can be written as

T =
∫ T

0
dt =

∫ L

0

ds

v
, (1.24)

where v is the speed of the bead, and s is the distance along the path, with
a total length L. However, we can once again write ds2 = dx2 + dy2 so that
ds =

√
1 + y′2 dx, and apply conservation of energy to find v =

√
2gy. Thus,

we can define a functional T

T [y] =
∫ a

0
dx

√
1 + y′2

2gy (1.25)

that we want to minimize with respect to y, again with fixed end points. We
can therefore apply the Euler-Lagrange equation, which gives after some algebra

yy′′ + 1
2(1 + y′2) = 0 . (1.26)

4



7 For example, is there a unique solution,
and does the solution always occur with
θ ∈ [0, 2π) for every point (a, b)? See for
example Ref. [1] for more details.

Once again, we can use the trick of multiplying by y′ to find that

y′
(
yy′′ + 1

2(1 + y′2)
)

= 1
2
d

dx

(
y(1 + y′2)

)
= 0 , (1.27)

or

y(1 + y′2) = 2C (1.28)

for some constant C. From this point, one can check that the following
parametrization (x(t), y(t)) is indeed a solution to the differential equation
above:

x = C(θ − sin θ)
y = C(1 − cos θ) , (1.29)

although it is surprisingly hard to pin down the details regarding this solution.7
This parametric curve is known as the cycloid, which is the curve traced out by
a fixed point on the rim of a wheel that is rolling without slipping along a flat
surface.

1.1.4 First integral

In both applications discussed in Sec. 1.1.3, we were able to rephrase the dif-
ferential equation to be solved as dI/dx = 0, implying that I is some constant
associated with the problem. This quirk, which somewhat resembles the con-
servation of quantities like energy, is something we will revisit in much greater
depth later: it is far deeper than just a mathematical coincidence. For now,
let’s just take a quick look at where it comes from. In both cases, the function
inside the integral was f(y, y′), with no explicit dependence on x, implying that

df

dx
=
�
�
�7

0
∂f

∂x
+ y′ ∂f

∂y
+ y′′ ∂f

∂y′ . (1.30)

We define the first integral of the Euler-Lagrange equation as

I ≡ f − y′ ∂f

∂y′ , (1.31)

from which we can check that
dI

dx
= y′ ∂f

∂y
+ y′′ ∂f

∂y′ − y′′ ∂f

∂y′ − y′ d

dx

(
∂f

∂y′

)
= y′

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
. (1.32)

Thus, dI/dx = 0 if the Euler-Lagrange equation is satisfied.
You can show that if f depends on more than one variable, so that we have

a functional of the form

J [y1, y2, · · · , yn] =
∫
dx f(y1, y2, · · · , yn; y′

1, y
′
2, · · · , y′

n) , (1.33)

the first integral is of the form

I = f −
∑

i

y′
i

∂f

∂y′
i

. (1.34)

Note that there is only one first integral, even when there are multiple dependent
variables yi.
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8 This can be the usual x, y and z in 3D
space, r, θ and ϕ in 3D spherical coor-
dinates, or something even more abstract
than these choices, it doesn’t matter.

x

y

r

θ

araθ

Figure 4: Coordinate system for the central force
problem.

1.2 Lagrangian Mechanics

It turns out that classical mechanics can be reformulated as a problem of finding
the stationary function of some functional. Given some system, we first define
the Lagrangian function L = T − V , where T and V are the kinetic and
potential energy functions of the system. We can make any choice of coordinates
we would like to describe T and V ; let’s say we choose some set of generalized
coordinates q with components qi and time derivatives q̇i.8

The equations of motion governing the system between times ti and tf
can then be obtained by finding the stationary function q(t) of the action
functional,

S[q] =
∫ tf

ti

dtL(t; qi, q̇i) . (1.35)

This is known as the principle of least action. It is no exaggeration to say that
a lot of theoretical physics basically involves finding the appropriate action that
describes the system of interest, once the principle of least action is applied.

(End of Lecture: Wednesday Sep 4 2024)

1.2.1 The central force problem

We’ll now turn our attention to an important problem in mechanics—a particle
of mass m moving in a potential V (r) which depends only on the distance r
from the origin, with the radial component of the force being Fr = −∂rV . We’ll
compute this two ways: the first using Newtonian mechanics, and the second
using Lagrangian mechanics. The coordinate system we’ll use is shown in Fig. 4.

In Newtonian mechanics, we would write down −∂rV = mar, and −∂θV/r =
0 = maθ, where ar and aθ are the radial and tangential accelerations respec-
tively. But to solve this equation, we need to find the acceleration in polar
coordinates. To do so, we’ll use a neat trick: take the particle to be traveling
in the complex plane, with coordinate given by the complex number z = reiθ.
Then

ż = ṙeiθ + iθ̇reiθ

z̈ = (r̈ − rθ̇2)eiθ + (2ṙθ̇ + rθ̈)(ieiθ) . (1.36)

On the complex plane, the first term is a complex number that is represented by
a vector that is parallel to reiθ, while the second term is represented by a vector
that is perpendicular to reiθ. We can therefore conclude that the acceleration
in polar coordinates is

ar = r̈ − rθ̇2 , aθ = 2ṙθ̇ + rθ̈ . (1.37)

Newton’s laws therefore read

m(r̈ − rθ̇2) = −∂rV (1.38)

m(2ṙθ̇ + rθ̈) = 0 =⇒ d

dt
(mr2θ̇) = 0 . (1.39)

You should recognize the second equation as expressing the conservation of
angular momentum, with l = mr2θ̇. Subtituting this expression into Eq. (1.38),
we find

mr̈ − l2

mr3 = −∂V

∂r
, (1.40)
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9 You may be tempted to plug l directly
into the Lagrangian, which looks like it
would remove one coordinate from the
Lagrangian, simplifying matters signifi-
cantly. But this is pure folly, and gets you
the wrong answer. The coordinates and
their derivatives are—each and every one
of them—independent variables of the
Lagrangian. The Lagrangian’s only aim
in life is to take in these coordinates, their
derivatives, and the time coordinate—not
knowing that they’re related in any way—
and spit out a number. The Lagrangian
knows absolutely nothing about trajecto-
ries involving these coordinates as a func-
tion of time.

y(x1)

y(x2)y

x

Figure 5: Railway across a strip of land with
straight, parallel sides.

the equation of motion governing all central force problems.
Now that was a bit of hike, and again, a lot of issue was that we had to deal

with vectors. Let’s see how the Lagrangian approach works out. First, we write
down the Lagrangian for the system,

L = T − V = 1
2m(ṙ2 + r2θ̇2) − V (r) . (1.41)

This depends on two coordinates, but is independent of t, and therefore we can
write down two Euler-Lagrange equations—one for each coordinate. These are:

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 =⇒ mr̈ −mrθ̇2 + ∂V

∂r
= 0 (1.42)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 =⇒ d

dt
(mr2θ̇) = 0 . (1.43)

Notice that we obtain the conservation of angular momentum immediately from
the second equation involving θ. Substituting once again l = mr2θ̇, we get the
same expression as before in Eq. (1.40).9

Let’s also compute the first integral, defined for this problem as

I = L− ṙ
∂L

∂ṙ
− θ̇

∂L

∂θ̇
= −1

2mṙ
2 − 1

2mr
2θ̇2 − V (r) = −(T + V ) , (1.44)

which is simply (the negative of) the total energy. Thus, the fact that the first
integral is constant is just a statement about conservation of energy in this
problem.

1.3 Variable Endpoints

So far, we’ve been dealing with situations where we want the endpoints to be
fixed. Now let’s see what happens when we relax that assumption. Consider
the problem of constructing a railway between two ports, located across a strip
of land with straight, parallel sides, illustrated in Fig. 5. Suppose that the cost
of construction is proportional to the length of the track, but the cost of sea
transport is negligible, and so that the ports can be wherever we want. We
therefore want to minimize the total length given once again by

L[y] =
∫ x2

x1

dx
√

1 + y′2 . (1.45)

This time however, we want to allow variations at the endpoints too. Considering
a small perturbation, we see that

δL =
∫ x2

x1

dx
y′√

1 + y′2
δy′ (1.46)

By now you should be familiar with what to do next: integrate by parts! Don’t
forget, however, the boundary terms. This gives

δL = y′(x2)√
1 + y′(x2)2

δy(x2) − y′(x1)√
1 + y′(x1)2

δy(x1)

−
∫ x2

x1

dx

[
d

dx

(
y′√

1 + y′2

)]
δy(x) . (1.47)

The extremum for L is achieved when δL = 0. But since we have complete
freedom to choose y(x), including y(x2) and y(x1), the coefficients to each of
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10 This is actually Noether’s first theo-
rem; the second theorem is much more
obscure, and we won’t discuss it in this
course.

δy(x2), δy(x1) and δy inside the integral must be zero. Let’s first consider the
coefficient for δy(x). This just says that

y′√
1 + y′2

= C =⇒ y′ = constant , (1.48)

and so we’d better be building a straight track, as expected. In addition however,
the other two terms now enforce

y′(x2)√
1 + y′(x2)2

= y′(x1)√
1 + y′(x1)2

= 0 =⇒ y′(x1) = y′(x2) = 0 . (1.49)

We therefore want to build the railway exactly perpendicular to the sea. All very
reasonable!

What you might have noticed is that by allowing the endpoints to float, you
ended up getting a boundary term that enforces some boundary conditions at
the two endpoints. Boundary conditions obtained through variation are known
as natural boundary conditions. We’ll come back to more examples with
natural boundary conditions later on.

1.4 Noether’s Theorem

We now come to one of the most profound results in mathematical physics.
We’ve seen in a few of the previous examples above that when we apply the prin-
ciple of least action, we can sometimes obtain equations of the form d(· · · )/dt =
0 when the Euler-Lagrange equation is satisfied. For example, for a Lagrangian of
the form L = L(q, q̇) with no explicit dependence on t, we know from Sec. 1.1.4
that the time derivative of the first integral is conserved:

d

dt

(
q̇
∂L

∂q̇
− L

)
= 0 . (1.50)

We also saw that in the central force problem in Sec. 1.2.1, we can show that
the angular momentum is conserved, i.e.

d

dt

(
mr2θ̇

)
= 0 , (1.51)

and in that case, the Lagrangian had not explicit dependence on θ. Equations
of this form are known as conservation laws, and you have, up to this point
in your physics career, already encountered many of them. But you may now
be seeing a pattern emerge: whenever there is no explicit dependence of L on
some quantity, you get conservation laws. And indeed this is true! These are
all manifestations of Noether’s theorem,10 which says that

Any continuous symmetry of the action corresponds to a conservation
law.

Now, your first thought might be, it’s a little strange that we have a theorem
that’s just written out in words. That’s really because you can prove many dif-
ferent mathematical statements that are described by those words, with various
levels of generality and formality. Because Noether’s theorem is so important, I
want to walk you through a proof of it at a relatively general level. Your second
thought might be that there are a lot of terms in there that I haven’t carefully
defined. But I think in this case, it’s best just to define things as we go along.
The discussion that follows below is mostly based on Ref. [2].

So let’s start with the classical action, written as

S[qi] =
∫ tf

ti

dtL(t; qi, q̇i) , (1.52)
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11 Sometimes you will hear people say
that a transformation is only a symmetry
if K = 0, and should be called a qua-
sisymmetry otherwise. We won’t make
this distinction.

12 For notation convenience, I’ll drop the
limits of the integral whenever nothing
much ever happens to it.

where I remind you that q is some generalized coordinate with components
qi(t) and time derivatives q̇i(t). We say that the action is invariant up to a
boundary term under a transformation qi(t) → qi(t)+εηi(t), where ε is taken
to be a small, time-independent quantity, if

δS ≡ S[qi + εηi] − S[qi] = ε

∫ tf

ti

dt
dK

dt
, (1.53)

for all qi(t), and for some boundary term K.
If this is the first time you’re seeing this, you might be wondering why even

bother with K at all—after all, that’s what the word invariant should mean.
But in fact, a lot of extremely interesting models (in both particle physics and
condensed matter physics) have actions which are invariant up to boundary
terms, and we would like to apply Noether’s theorem to them. An equivalent
way to say the same thing is that the action is invariant up to a boundary term
if the Lagrangian transforms by a total derivative dK/dt.

Any transformation which leaves the action invariant up to a boundary term,
or transforms the Lagrangian by a total derivative, is called a symmetry.11 The
first question you should ask when you see a Lagrangian is always, “what are its
symmetries?” This is the organizing principle behind all of the models that we
study in physics. So let’s check out some examples. Consider once again the
central force problem,

S =
∫ tf

ti

dt

[
1
2m

˙⃗r 2 − V (r)
]
, (1.54)

The action is invariant under rotations, i.e. perform the transformation r⃗ → Rr⃗,
where R is constant, orthogonal matrix with R⊺ = R−1, even for very large
rotations, since ˙⃗r 2 → (R ˙⃗r)⊺R ˙⃗r = ˙⃗r ⊺R⊺R ˙⃗r = ˙⃗r 2, in addition to the fact that
rotations preserve length, i.e. |Rr⃗| = r.

Let’s consider another transformation to the action

r⃗(t) → r⃗(t) − ε ˙⃗r(t) , (1.55)

again with ε being small. Under this transformation, we find12

S[ri] → S[ri − εṙi] =
∫
dt

[
1
2m( ˙⃗r − ε¨⃗r)2 − V (r⃗ − ε ˙⃗r)

]
=
∫
dt

[
1
2m

˙⃗r 2 − εm ˙⃗r ¨⃗r − V (r⃗) + ε ˙⃗r i∂iV

]
= S[ri] − ε

∫
dt

d

dt

[
1
2m

˙⃗r 2 − V (r)
]
. (1.56)

We can therefore conclude that the action is invariant under this transformation
up to a boundary term, K = L. What is this strange transformation? Well,
it really isn’t that mysterious if you just think of it as relabeling time by the
coordinate τ , which is just a constant shift from t, i.e. τ = t + ε. With this
transformation, r⃗(t) = r⃗(τ) − ε ˙⃗r(τ), and it is easy to see that you get the same
transformation as in Eq. (1.56).

Let’s now consider an arbitrary transformation, one that isn’t necessarily a
symmetry. It also doesn’t necessarily have to leave the endpoints fixed. Denoting
this transformation as qi → qi + εζi(t) and apply this to the classical action

9



Eq. (1.52). This gives (using index notation)

δS =
∫ tf

ti

dt
∂L

∂qi
εζi(t) + ∂L

∂q̇i
εζ̇i(t)

=
∫ tf

ti

dt
∂L

∂qi
+ ∂L

∂q̇i
εζi

∣∣∣∣tf

ti

−
∫ tf

ti

dt
d

dt

(
∂L

∂q̇i

)
εζi

=
∫ tf

ti

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
εζi +

∫ tf

ti

dt
d

dt

(
∂L

∂q̇i
εζi

)
, (1.57)

where we have kept the boundary term after performing integration by parts.
Now, let’s choose the arbitrary transformation ζi(t) to be one that leaves the

action invariant. Then we have the following relation, after dividing throughout
by ε, ∫ tf

ti

dt
d

dt

(
K − ∂L

∂q̇i
ζi

)
=
∫ tf

ti

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
ζi . (1.58)

In classical mechanics, we’re often interested in the behavior of a system at
arbitrary times, and indeed, it doesn’t really matter what the precise values of
ti and tf are. Because of that, we need the integrand themselves to be equal,
i.e.

d

dt

(
K − ∂L

∂q̇i
ζi

)
=
[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
ζi . (1.59)

This relation is known as the Noether identity, and is true for any ζi that is
a symmetry. Note that at this point, we have not even mentioned the Euler-
Lagrange equation. This relation is true for arbitrary qi(t), whether or not it
corresponds to a the physical solution. When an equation is true before having
enforced the Euler-Lagrange equation, we call in an off-shell relation, a term
that you’re bound to run into again.

Now let’s take the relation on-shell, so that we are only considering qi(t)
that satisfies the Euler-Lagrange equation. For such qi(t), the right-hand side
of the previous equation vanishes, and we find

dQ

dt

E-L= 0 , Q = K − ∂L

∂q̇i
ζi . (1.60)

This is our big result, Noether’s theorem: given a symmetry of the action ζi,
we can define a quantity called a Noether charge (or just “charge”) that is
conserved on-shell, i.e. for physical trajectories.

That was a lot of abstract discussion; let’s now take a look at some examples.

(End of Lecture: Monday Sep 9 2024)

1.4.1 The central force problem revisited

Let’s return once again to the to the central force problem, with

S[r⃗] =
∫ tf

ti

dt

[
1
2m

˙⃗r 2 − V (r)
]
. (1.61)

We saw earlier that the action was invariant under rotations. You can convince
yourself (see Fig. 6 that an infinitesimal rotation about some arbitrary axis with

10



r⃗

α̂

α̂× r⃗

Figure 6: Infinitesimal rotations of r⃗ about axis
α̂ are in the direction α̂ × r⃗.

13 Since ε is constant, q̇ remains un-
changed.

unit vector α̂ can be written as r⃗ → r⃗ + εα̂ × r⃗. We also checked that the
rotation leaves the action invariant with K = 0. Putting this altogether, we
find that the Noether charge associated with rotational symmetry is (using index
notation)

Q = − ∂L

∂ṙi
(α̂× r⃗)i = −(m ˙⃗ri)(α̂× r⃗)i = α̂ · (r⃗ × p⃗) , (1.62)

where p⃗ ≡ m ˙⃗r is the momentum. You should recognize immediately that L⃗ =
r⃗×p⃗ is the angular momentum, the Noether charge corresponding to rotational
symmetry, and since α̂ is arbitrary, L⃗ is conserved.

We also considered another transformation r⃗ → r⃗−ε ˙⃗r, which left the action
invariant up to a boundary term, K = L, the Lagrangian. We also saw that
this transformation was equivalent to time translation, t → t + ε. Once again,
the Noether charge associated with this symmetry is

Q = L− ∂L

∂ṙi
˙⃗r i = 1

2m
˙⃗r 2 − V (r) −m ˙⃗r 2 = −

[
1
2m

˙⃗r 2 + V (r)
]
, (1.63)

which is simply the statement that the Noether charge is the total energy,
and is conserved. More generally, for any action that has time-translation as a
symmetry, e.g. L = L(qi, q̇i), the total energy is

E = ∂L

∂q̇i
q̇i − L , (1.64)

and is conserved. You should recognize that E is nothing but the first integral
that we described in Eq. (1.31).

1.4.2 Common symmetries

Before we move on from Noether’s theorem, let’s examine some common sym-
metries that you’ve probably already encountered in classical mechanics, and
how they usually arise from Noether’s theorem.

1.4.2.1 Spatial translation invariance implies momentum conservation.
If a Lagrangian is invariant under a small, constant, spatial translation ε of some
coordinate q, i.e. L(t; q + ε, q̇) = L(t; q, q̇).13 Noether’s theorem (Eq. (1.60))
tells us that the associated charge is

Q = p ≡ ∂L

∂q̇
and dp

dt
= 0 , (1.65)

where p is the momentum conjugate to q. One simple scenario where momentum
conservation holds is when the Lagrangian simply doesn’t depend explicitly on q
at all; in this case, q is known as a cyclic coordinate. This is what happens in
systems with cylindrical symmetry, for example, and therefore have Lagrangians
that do not depend on the azimuthal angle, leading to an associated conserved
angular momentum.

1.4.2.2 Time translation invariance implies energy conservation. Sup-
pose we performed the translation q(t) → q(t+ ε), where ε is once again small
and constant. You can imagine this as taking a trajectory that previously started

11



at time t, and now starting it at t− ε instead. Then the action transforms as

S[q] →
∫ tf

ti

dtL(t; q(t+ ε), q̇(t+ ε))

=
∫ tf +ε

ti+ε

dτ L(τ − ε; q(τ), q̇(τ))

= S[q] + ε [L(tf , q(tf ), q̇(tf )) − L(ti, q(ti), q̇(ti))] − ε

∫ tf

ti

dτ
∂L

∂τ
.

(1.66)

Here, the second term is a boundary term, but the third term might not be:
we can therefore see that time translation is a symmetry of the action if the
Lagrangian does not depend explicitly on t, with the conserved charge being
energy, i.e.

∂L

∂t
= 0 =⇒ Energy is conserved. (1.67)

We have derived the expression for energy several times already, for example in
Eq. (1.64): we do this by noting that q(t+ ε) = q(t) + εq̇(t), and then applying
Noether’s theorem.

1.5 Continuous Systems

So far, we have been looking at Lagrangians that have only a single particle. For
multiple particles, we can similarly write down Lagrangians involving {qi, q̇i} for
each particle. Frequently, however, we’re interested in fields, like the electro-
magnetic field, and we want to be able to write down field theories by similarly
writing down an action, extremizing it, and finding the equations of motion.
Suppose we have a field with value φ(x), where x ≡ xµ, µ = 0, 1, · · · , d is the
coordinate of a (d + 1)-dimensional space (or spacetime). We can write down
actions that look like

S[φ] =
∫
dtL =

∫
dd+1xL(x, φ, ∂µφ) , (1.68)

where L is the Lagrangian density,

L ≡
∫
ddxL , (1.69)

and

∂µφ ≡ ∂φ

∂xµ
. (1.70)

We’re going to follow a similar path to what we discussed in Sec. 1.1.1. We’ll
take a variation over the action, φ(x) → φ(x) + εη(x), and so correspondingly
∂µφ(x) → ∂µφ(x) + ε∂µη(x), with no variation on the d-dimensional boundary
of our (d+ 1)-dimensional space. We get

δS =
∫
dd+1x

[
∂L
∂φ

εη + ∂L
∂(∂µφ)ε∂µη

]
. (1.71)

At this point, we want to integrate by parts, which we can do using the diver-
gence theorem,
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y(x, t)

0 L

Figure 7: Set up for the vibrating string.

∫
Ω
dn+1x ∂µf

µ =
∫

∂Ω
dS nµf

µ , (1.72)

where ∂Ω is the boundary of Ω, dS is an element of area on the boundary, and
nµ is the outward-pointing normal vector. Much more on this later on in the
course, but for now, we see that∫

Ω
dn+1x ∂µ

(
∂L

∂(∂µφ)ϵη
)

=
∫
dn+1x

(
∂µ

∂L
∂(∂µφ)εη + ∂L

∂(∂µφ)ε∂µη

)
=
∫

∂Ω
dS nµ

(
∂L

∂(∂µφ)

)
ϵη

= 0 , (1.73)

since η does not vary on the boundary, allowing us to write

δS =
∫
dd+1x

[
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

]
εη . (1.74)

Effectively, if we are only allowing for variations that are zero on the boundary,
we can simply integrate by parts by switch the position of ∂µ. Extremizing the
action therefore means that

δS

δφ
≡ ∂L
∂φ

− ∂µ
∂L

∂(∂µφ) = 0 , (1.75)

which is the Euler-Lagrange equation in continuous form.

1.5.1 The vibrating string

Our first example of a continuous system is a string, shown in Fig. 7. The string
has fixed ends, a mass per unit length of ρ, and is under tension T . If we assume
only small displacements from equilibrium, the Lagrangian is

L =
∫ L

0
dx

(
1
2ρẏ

2 − 1
2Ty

′2
)
, (1.76)

where the dot denotes a partial derivative with respect to t, and the prime a
partial derivative with respect to x.

The variation of the action is

δS =
∫
dt

∫ L

0
dx (ρẏδẏ − Ty′δy′)

=
∫
dt

∫ L

0
dx (−ρÿ + Ty′′) δy , (1.77)

where to reach the second line, we perform integration by parts, and because
the endpoints are fixed, δy = 0 when x = 0 and x = L. Extremizing the action
δS = 0 gives the equation of motion

ρÿ − Ty′′ = 0 , (1.78)

which is the wave equation with transverse waves propagating with speed c =√
T/ρ.

(End of Lecture: Wednesday Sep 11 2024)
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14 The reason its called “canonical” and
not just “the” energy-momentum tensor
is because it’s often the case that this
isn’t quite what you want to work with.
Instead, you often want to work with Tµν

shifted by some other object whose total
derivative is zero. In electromagnetism,
this procedure of “fixing” Tµν is often
called the Belinfante improvement proce-
dure.

1.5.2 The canonical energy-momentum tensor

Just as in the case of a single-particle Lagrangian, with conservation of mo-
mentum and energy, if the Lagrangian density L ≡ L(φ, ∂µφ) does not depend
explicitly on xµ, then we should expect a conservation law as well.

We’ll go through the derivation of the Noether charge here again, as the
result is presented in often confusing ways in many textbooks. Suppose our
action is of the form

S =
∫
dd+1xL(φ, ∂µφ) . (1.79)

Then, we know that under the transformation xµ → xµ + εµ, where εµ is
constant, we can expand L to give

δS =
∫
dd+1x εµ∂µL , (1.80)

where

∂µL = ∂L
∂φ

∂µφ+ ∂L
∂(∂νφ)∂µ(∂νφ) . (1.81)

Note that in this transformation is a symmetry of the action, since εµ∂µL is a
total derivative. However, if we promote εµ → εµ(xµ) from a global to a local
transformation, this stops being true.

Now, let’s consider the arbitrary transformation, xµ → xµ + ζµ(xµ) (not
necessarily constant, and not necessarily with no variation on the boundary!).
This gives

φ → φ+ ζµ∂µφ , ∂µφ → ∂µφ+ ∂µ(ζν∂νφ) . (1.82)

δS =
∫
dd+1x

[
∂L
∂φ

ζµ∂µφ+ ∂L
∂(∂νφ)∂ν(ζµ∂µφ)

]
=
∫
dd+1x

[
∂L
∂φ

− ∂ν
∂L

∂(∂νφ)

]
ζµ∂µφ+

∫
dd+1x ∂ν

(
∂L

∂(∂νφ)ζ
µ∂µφ

)
.

(1.83)

Now, setting ζµ = εµ, and going on-shell, the first term goes to zero as the
Euler-Lagrange equations are satisfied, giving∫

dd+1x εµ∂µL =
∫
dd+1x εµ∂ν

(
∂L

∂(∂νφ)∂µφ

)
=⇒

∫
dd+1x εµ∂ν

(
Lδν

µ − ∂L
∂(∂νφ)∂µφ

)
= 0 . (1.84)

We call the Noether charge here the canonical energy-momentum tensor,14

T ν
µ ≡ ∂L

∂(∂νφ)∂µφ− δν
µL , (1.85)

with the statement

∂νT
ν
µ = 0 (1.86)

denoting local energy-momentum conservation. This can be extended to the
case where there are multiple fields, in which case the first term on the right-
hand side of Eq. (1.84) picks up a sum over all fields.
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1.5.3 The vibrating string revisited

We now return to the vibrating string, with Lagrangian given in Eq. (1.76). We
can now compute the canonical energy-momentum tensor for this system. For
µ = 0,

T ν
0 = ∂L

∂(∂νφ)∂0φ− δν
0 L , (1.87)

and so

T 0
0 = ρẏ2 −

(
1
2ρẏ

2 − 1
2Ty

′2
)

= 1
2ρẏ

2 + 1
2Ty

′2 , (1.88)

T 1
0 = −Ty′ẏ . (1.89)

In addition, the conservation laws read

0 = ∂νT
ν
0 = ∂ν

[
∂L

∂(∂νφ)∂0φ

]
− ∂νδ

ν
0 L

= ∂t(ρẏ2 − L) + ∂x(−Ty′ẏ)

= ∂t

(
1
2ρẏ

2 + 1
2Ty

′2
)

− ∂x(Ty′ẏ) , (1.90)

0 = ∂νT
ν
1 = ∂ν

[
∂L

∂(∂νφ)∂1φ

]
− ∂νδ

ν
1 L

= ∂t(ρẏy′) + ∂x(−Ty′2 − L)

= ∂t(ρẏy′) − ∂x

(
1
2ρẏ

2 + 1
2Ty

′2
)
. (1.91)

These are local conservation laws of the same form as the continuity equation,

∂q

∂t
+ ∇ · J⃗ = 0 , (1.92)

where q should be thought of as a local density (e.g. charge density of fluid
density) with a globally conserved quantity Q =

∫
ddx q, and J⃗ is a flux. For

∂νT
ν
0 = 0, the local density is

T 0
0 = 1

2ρẏ
2 + 1

2Ty
′2 , (1.93)

which is the energy density. The energy flux is T 1
0 = −T ẏy′, which is the rate

that a segment of string is doing work on its neighbor to the right. Let’s check
that the total energy is globally conserved:

d

dt

∫ L

0
dx

(
1
2ρẏ

2 + 1
2Ty

′2
)

=
∫ L

0
dx

∂

∂t

(
1
2ρẏ

2 + 1
2Ty

′2
)

=
∫ L

0
dx

∂

∂x
(Ty′ẏ)

= Ty′ẏ|L0 = 0 , (1.94)

since the string is clamped at the ends, as expected.
That’s really the last we’ll say about continuous systems, but of course, there

is so much more to say. You’ll learn more about these systems in classes like
quantum field theory and statistical physics.
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J [y]

K[y] = 0

Figure 8: An illustration of the Lagrange multi-
plier method.
15 One has to be careful when apply-
ing this to Newtonian mechanics, where
the constraints should be applied to the
Euler-Lagrange equation themselves in
order to get the right dynamics. Equiva-
lently, the extremization of S̃ cannot be
over arbitrary q, but must also be over
only those δq where the constraints are
satisfied. Using our procedure for con-
straints of the form g(t; q), with no de-
pendence on q̇, works; these are called
holonomic constraints. However, what
we have here does not work for gen-
eral constraints. For a much more de-
tailed discussion of holonomic and non-
holonomic constraints, and when the
Lagrange multiplier method fails, see
Ref. [3] for an excellent discussion of this
topic.

1.6 Constraints

When we want to find the extremum of some function or functional, we often
want to impose some constraints on that extremum. Here are some classic
examples of problems that involve finding extrema under some constraint:

1. Given a curve a fixed length on a plane, what is the maximum area that
it can enclose? What is the shape of the curve in that case?

2. Consider a chain with fixed length suspended between two points, both
a fixed height above the ground. What is the shape of the chain that
minimizes the potential energy?

The strategy that we are going to adopt here is identical to what you may have
seen in vector calculus, with the use of Lagrange multipliers. Suppose you
have a functional J [y] that you want to extremize, subject to some constraint
given by K[y] = 0. Consider the modified functional J̃ [y, λ] = J [y] − λK[y],
for some new parameter λ. First, we note that if vary the new parameter λ, we
find

J̃ [y, λ+ δλ] − J̃ [y, λ] = −δλ ·K[y] , (1.95)

and so when we extremize J̃ , including over possible variations in λ, we require
K[y] = 0, the precise constraint that we wanted to impose!

Under a variation of y, on the other hand, we obtain

J̃ [y + δy, λ] − J̃ [y, λ] = δJ [y, δy] − λ · δK[y, δy] , (1.96)

where δJ [y, δy] = δJ [y + δy] − δJ [y], and likewise for δK. At the extremum
δJ̃ = 0 for some y = y∗ then, we must necessarily have

δJ [y∗, δy] = λ · δK[y∗, δy] (1.97)

for all variations δy away from y∗. What’s going on here? First of all, K[y∗] = 0,
and so y∗ corresponds to a point where the constraint is satisfied. Now, if the
variation δy preserves this constraint, then δK[y∗, y + δy] = 0; in that case,
the previous equation says that δJ [y∗, y + δy] = 0 as well. In other words, J
itself is also extremized, as long as we limit ourselves to δy that preserves the
constraint.

Fig. 8 shows an illustration of how this method works. The equation of
motion for λ enforces the constraint, and fixes the trajectory to lie along the
blue line, with K[y] = 0. We can see that if we choose variations along the blue
trajectory so that the constraint is always satisfied, δK = 0, but not necessarily
δJ , except at the extremum of J along the trajectory (marked in red). At this
point, in the direction δK = 0, δJ = 0 as well, since it is a local extremum.
Our clever choice of J̃ gave us 1) an equation of motion for λ that constrained
us to the blue trajectory, and 2) an equation of motion for y that is satisfied for
points where J is extremized along the trajectory.

Another common situation where Lagrange multipliers can be used is in
classical mechanics, when you want to extremize an action given by S =∫
dtL(t; q, q̇), subject to some constraint on the coordinate q, e.g. g(t; q, q̇) = 0.

We can again consider the modified action S̃, where

S̃[q, λ] =
∫
dt [L− λ(t)g(t; q, q̇)] , (1.98)

where once again, extremizing S̃ over all q and λ simultaneously enforces the
desired constraint, and extremizes L when subject to the constraint.15
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16 They’re not functions! In particular,
they can live outside the integral over
Γ. There’s nothing wrong with having a
functional depend on real numbers. You
can also use Lagrange multipliers that are
functions, if for example the constraint
you are imposing is on ρ itself, and not
the integral of ρ, as we are in this case.

1.6.1 Maximum entropy distribution

Our first example of how to use this comes from statistical mechanics. Let
Γ denote the classical phase space of a mechanical system of N particles
governed by a Hamiltonian H(pi

n, q
i
n), with n = 1, · · · , N , i = 1, 2, 3 and

dΓ ≡
∏N

n=1(d3p⃗n d
3q⃗n). We define the phase space density ρ(pi

n, q
i
n) such that

ρ(pi
n, q

i
n)dΓ is the probability of the system being in some state given by pi

n and
qi

n in the small region dΓ.
The entropy related to this probability distribution can be defined as the

functional

S[ρ] = −
∫

Γ
dΓ ρ log ρ . (1.99)

We now want to find ρ that maximizes the entropy for a given mean energy,

⟨E⟩ =
∫

Γ
dΓ ρH . (1.100)

However, ρ is subject to the constraint that it is a probability density function,
and so we must enforce the constraint∫

Γ
dΓ ρ = 1 . (1.101)

We can solve this problem by defining a new functional S̃[ρ, α, β], where

S̃[ρ, α, β] = S[ρ] + α

(∫
Γ
dΓ ρ− 1

)
+ β

(∫
Γ
dΓ ρH − ⟨E⟩

)
. (1.102)

The equations of motion for the real-number16 Lagrange multipliers α and β
enforce the two constraints that we mentioned above. Now for ρ, we have

ρ log ρ → (ρ+ δρ) log(ρ+ δρ) = ρ log ρ+ δρ log ρ+ ρ · δρ
ρ

(1.103)

and so

δS̃ =
∫

Γ
dΓ (1 + log ρ+ α+ βH) δρ , (1.104)

and setting the term in parentheses to zero to extremize δS̃ gives

ρ(pi
n, q

i
n) = e−1−α−βH(pi

n,qi
n) . (1.105)

At this point, α and β can be determined from the normalization and energy
constraints detailed above, with the exact answer being determined by the expect
form of H. This probability density is the usual canonical distribution. Note
that you can see from this procedure that the temperature T ≡ 1/β appears as
a Lagrange multiplier in this procedure.

(End of Lecture: Monday Sep 16 2024)

1.6.2 The catenary

We are now ready to tackle another classic calculus of variations problem: given
a chain of fixed length and constant linear density suspended between two poles
situated at x = −R/2 and x = R/2 (the height of these poles are fixed as well),
what is the shape of the chain that minimizes the potential energy?
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The total potential energy of the chain is the functional

E[y] =
∫ R/2

−R/2
dℓ y =

∫ L

−L

dx y
√

1 + y′2 , (1.106)

where I’ve dropped the density and the acceleration due to gravity for simplicity:
they enter only as an overall multiplicative factor to the energy. I would like to
extremize E[y] subject to the constraint that the length of the chain is some
constant L, i.e. ∫ R/2

−R/2
dx
√

1 + y′2 = L . (1.107)

As before, we define a new functional Ẽ[y, λ], where λ is a real number Lagrange
multiplier, and

Ẽ[y, λ] = E[y] − λ

(∫ R/2

−R/2
dx
√

1 + y′2 − L

)

=
∫ R/2

−R/2
dx

[
(y − λ)

√
1 + y′2 + λL

R

]
. (1.108)

The equation of motion for y is then given by extremizing the first term in
the equation above. We can just focus on the part of the action given by the
integral since the other term doesn’t depend on y, and use the Euler-Lagrange
equations. Or, if we are a little bit cleverer, we can use the fact that the first
integral is constant, since there is no explicit x dependence, i.e.

(y − λ)
√

1 + y′2 − y′2(y − λ)√
1 + y′2

= C =⇒ 1 + y′2 − y′2 = C

y − λ

√
1 + y′2

=⇒ (y − λ)2

C2 − y′2 = 1 . (1.109)

This equation should remind you of cosh2 t − sinh2 t = 1, and so the general
solution is

y − λ = C cosh
(
x+D

C

)
, (1.110)

i.e. the minimum energy curve should look like a hyperbola. This shape is also
known as the catenary, and the constants are fixed by the heights of the two
poles, and the requirement that the total length of the curve is L.
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2 Calculus on Manifolds
References: Stone & Goldbart (SG) Chapter 10, Appendix A; Carroll Chapter 2

We’re all very familiar by now with how to do calculus in Rn. But often in
physics, we want to be able to do calculus in spaces that don’t quite look like
Rn. One example you’ve probably already seen is doing calculus in Minkowski
space in special relativity. Another perhaps more mundane example is doing
calculus on a sphere. Most of our intuition, however, is grounded in the logic
and structures of Rn, which we sometimes take for granted. And so it will help
for us to think very carefully about how Rn works in a more formal language,
in order for us to see how to generalize to other spaces.

2.1 Some Facts from Linear Algebra

The study of spaces like Rn falls under the subject of linear algebra. While a
course in mathematical physics might feel a little incomplete without covering
this topic in detail, linear algebra is generally well-covered in undergraduate
curricula. We’ll content ourselves with a lightning review of some key facts.

2.1.1 Vector spaces and inner products

So what are the structures of Rn that we take for granted? First, the funda-
mental quantities that we deal with in real space are vectors. A collection of
objects that live in real space is simply a set, but the interesting thing about real
space is that there are relations between the objects in the space. In fact, real
space is an example of a vector space, a structure which is defined as follows:

A vector space V over a field F is a set equipped with two operations:
a binary operation called vector addition which assigns to each pair of
elements x⃗, y⃗ ∈ V a third element denoted x⃗+ y⃗, and scalar multipli-
cation which assigns to an element x⃗ ∈ V and λ ∈ F a new element
λx⃗ ∈ V . There is also a distinguished element 0⃗ ∈ V such that the
follow axioms are obeyed:

1. Vector addition is commutative: x⃗+ y⃗ = y⃗ + x⃗;

2. Vector addition is associative: (x⃗+ y⃗) + z⃗ = x⃗+ (y⃗ + z⃗);

3. Additive identity: 0⃗ + x⃗ = x⃗;

4. Existence of an additive inverse: for any x⃗ ∈ V , there is an element
−x⃗ ∈ V such that x⃗+ (−x⃗) = 0⃗;

5. Scalar distributive law: λ(x⃗+ y⃗) = λx⃗+λy⃗, as well as (λ+µ)x⃗ =
λx⃗+ µx⃗;

6. Scalar multiplication is associative: (λµ)x⃗ = λ(µx⃗), and

7. Multiplicative identity: 1x⃗ = x⃗.

A lot of that just seems very natural, and so it might seem like a lot of useless
abstraction. But the point is to be clear about what a vector in the abstract
actually is, so that when we’re in much less familiar settings, these formal struc-
tures are going to help us cut through the confusion. Furthermore, we can study
properties of all vector spaces that would apply equally well to Rn as it does to
any other vector space.

19



17 There are a few differences here com-
pared to the usual definition in mathe-
matics. First, in mathematics, it is com-
mon to have linearity apply to the first
argument. This is of course is entirely
equivalent. We use this definition to con-
form with our usual intuition in braket no-
tation. Second, the inner product space
is usually defined as having a positive def-
inite inner product; but this unfortunately
excludes Minkowski space, which is more
properly classified as a pseudo-inner prod-
uct. We don’t really care about these dif-
ferences in physics though.

Here, you can see that Rn is a vector space over the field R. However, you’re
also familiar with vector spaces over the complex numbers C: one example is
the Hilbert space, which underpins quantum mechanics. The states of a system
are described as vectors |ψ⟩ in a Hilbert space. The results of linear algebra
apply equally well to both Rn and Hilbert spaces.

In addition to being able to add vectors, or multiply vectors by real numbers,
another important thing you can do in Rn is talk about distances: you can take
the dot product or inner product of a vector with itself to talk about length, or
take the inner product of two different vectors and talk about angles. Formally,
vector spaces with this additional structure are called inner product spaces.
Inner product spaces are defined as follows:17

An inner product space is a vector space V over a field F, together
with an inner product, which is a map

⟨·, ·⟩ : V × V → F , (2.1)

that satisfies the following properties for all x⃗, y⃗, z⃗ ∈ V and λ, µ ∈ F:

1. Conjugate symmetry: ⟨x⃗, y⃗⟩ = ⟨y⃗, x⃗⟩∗ , where ∗ denotes com-
plex conjugation. If F is real, then this just means that the inner
product should be symmetric;

2. Linearity in the second argument, i.e. ⟨x⃗, λy⃗ + µz⃗⟩ = λ⟨x⃗, y⃗⟩ +
µ⟨x⃗, z⃗⟩. Note that this together with conjugate symmetry implies
that ⟨λx⃗+µy⃗, z⟩ = λ∗⟨x⃗, z⃗⟩ +µ∗⟨y⃗, z⃗⟩. The inner product is only
linear in both arguments when F = R, and

3. Nondegenerate, i.e. if ⟨x⃗, y⃗⟩ = 0 for all y⃗, then x⃗ = 0.

The inner product on Rn is the dot product; in Hilbert space, it is denoted
⟨ψ′|ψ⟩; in Minkowski space, we have the metric tensor. We’ll go into a lot more
detail on this in just a bit.

The last thing that we’ll talk about are linear transformations (also known
as linear operators or linear maps), which are functions that take us between
vector spaces. Let V and W be vector spaces with dimensions n and m respec-
tively; A : V → W is a linear transformation if

A(λx⃗+ µy⃗) = λA(x⃗) + µA(y⃗) . (2.2)

2.1.2 Bases and components

At this point, the vectors on a vector space are still abstract objects. In order to
make contact with our usual representation of vectors as a column of numbers,
we need to define a basis for the vector space. This is something that you’ve
probably seen in linear algebra, but we’ll state some facts and definitions that
all are somewhat intuitive:

1. A set of vectors {e⃗1, e⃗2, · · · , e⃗n} is linearly dependent if there exist
λ1, · · · , λn ∈ F, written as λµ for µ = 1, · · · , n, not all zero, such that

λ1e⃗1 + λ2e⃗2 + · · ·λne⃗n = 0⃗ . (2.3)

2. If it is not linearly dependent, a set of vectors {e⃗1, e⃗2, · · · , e⃗n} is linearly
independent. For a linearly independent set, the relation

λ1e⃗1 + λ2e⃗2 + · · ·λne⃗n = 0⃗ (2.4)

holds only if λ1 = · · · = λn = 0.
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3. A set of vectors {e⃗1, e⃗2, · · · , e⃗n} is said to span V if for any x⃗ ∈ V , there
are numbers xµ such that x⃗ can be written (not necessarily uniquely) as

x⃗ = x1e⃗1 + x2e⃗2 + · · · + xne⃗n . (2.5)

A vector space is finite dimensional if a finite spanning set exists.

4. A set of vectors {e⃗1, e⃗2, · · · , e⃗n} is a basis if it is a maximally linearly in-
dependent set, i.e. introducing any additional vector makes the set linearly
dependent. Equivalently, a basis is a minimal spanning set, i.e. deleting
any of the e⃗i destroys the spanning property.

5. If {e⃗1, e⃗2, · · · , e⃗n} is a basis, then any x⃗ ∈ V can be written

x⃗ = x1e⃗1 + x2e⃗2 + · · · + xne⃗n , (2.6)

where the xµ, known as the components of the vector with respect to
this basis, are unique in that two vectors coincide if and only if they have
the same components.

6. If the sets {e⃗1, e⃗2, · · · , e⃗n} and {f⃗1, f⃗2, · · · , f⃗m} are both bases for the
space V , then m = n. This invariant integer is the dimension, dim(V ),
of the space.

At this point, you may be looking at the notation above and wondering
about the placement of indices: when are indices placed above, and when are
they placed below? This will made clear in the next part of our discussion.

2.2 Change of Bases, Covariant and Contravariant Transformations

Having defined the concepts of a basis, and the components of a vector with
respect to a basis, we now want to understand how these components change
as we choose different bases, since bases are not unique.

Suppose a vector space V has two different bases given by {e⃗1, · · · , e⃗n}
and {e⃗ ′

1, · · · , e⃗ ′
n}. Since both sets span V , every vector in {e⃗1, · · · , e⃗n} can be

written as a sum of {e⃗ ′
1, · · · , e⃗ ′

n}, and we can define a set of n2 numbers aµ
ν

which maps

e⃗ν =
n∑

µ=1
aµ

ν e⃗
′
µ ≡ aµ

ν e⃗
′
µ = e⃗ ′

µa
µ

ν . (2.7)

At this point, we’ve introduced the famous Einstein notation, which just says
that every repeated index should be regarded as being summed over all possible
values. Again, you may be worried about the placement of the indices, but all
be clear as we go along. The final expression is helpful in helping you visualize
the object e⃗ ′

µ as a row vector, multiplied by the matrix aµ
ν , where µ indexes

its rows, and ν indexes its columns.
aµ

ν is clearly invertible: every vector has a unique representation in each
basis, and the map takes the coordinates of any vector in one basis to another,
and so it is certainly a bijective map. We can therefore define (a−1)µ

ν as the
inverse map,

e⃗ ′
ν = (a−1)µ

ν e⃗µ , (2.8)

with

(a−1)µ
νa

ν
σ = δµ

σ , (2.9)

where δµ
σ is the Kronecker delta or the identity matrix.
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18 Very often, you will see the nota-
tion aµ

ν ≡ ∂x′µ/∂xν , which makes total
sense if you look at Eq. (2.11). In fact,
the advantage of writing it this way tells
you how to obtain the matrix aµ

ν .

+θ

−θ

e⃗µ

e⃗ ′
µ

e⃗µ, e⃗
′
µ

xµ, x′µ

xµ

x′µ

Figure 9: Two equivalent ways to think of a
change of basis. (Top) the basis vectors them-
selves are transformed, or (bottom) the coordi-
nates are transformed in the opposite direction.
These pictures are equivalent.

So far, we have dealt with the transformation of the basis. But how does
a general vector transform? Given the transformation between bases above, we
see that for any arbitrary vector x⃗, which can be written as xν e⃗ν in one basis
and x′µe⃗ ′

µ in the other, are related by

x⃗ = x′µe⃗ ′
µ = xν e⃗ν = xν(aµ

ν e⃗
′
µ) = (aµ

νx
ν)e⃗ ′

µ , (2.10)

or in other words,18

x′µ = aµ
νx

ν . (2.11)

One thing you should notice immediately is that the basis and the coordinates
transform in the opposite way:

x′µ = aµ
νx

ν , e⃗ ′
µ = (a−1)σ

µe⃗σ , (2.12)

because of course the vector itself, x′µe⃗ ′
µ = xµe⃗µ, doesn’t transform under a

coordinate change at all! Any quantity that transforms under a change of basis
like the basis itself is said to transform covariantly, while any quantity that
transforms like the coordinates, i.e. in the opposite manner as the basis, is said
to transform contravariantly. We will always use indices on the top to indicate
a quantity that transforms contravariantly, and indices on the bottom to indicate
a quantity that transform covariantly.

The best intuition for this comes from imagining a change of basis via rota-
tion in R2, as shown in Fig. 9. Either we can imagine the basis vectors actually
rotating counterclockwise and defining a new set of axes, as we would do in
taking x′ν e⃗ ′

ν = x′ν(aµ
ν e⃗µ), or equivalently, we can think of the components

of the vector themselves rotating clockwise, with the axes just being relabeled,
which corresponds to x′ν e⃗ ′

ν = (aµ
νx

′ν)e⃗µ.

(End of Lecture: Wednesday 18 Sep 2024)

2.3 The Dual Space

For every vector space V , we can define a dual space V ∗, which is a set of
linear transformations f : V → F, each of which takes in a vector and returns
a number. The functions f are called covectors or one-forms, and you can
convince yourself that V ∗ is also a vector space. Since these functions are linear,
we have

f(x⃗) = f(xµe⃗µ) = xµf(e⃗µ) ≡ xµfµ , (2.13)

where in the last equality I have defined the set of numbers fµ ≡ f(e⃗µ), which
I can construct given the basis {e⃗µ} in V . Under a change of basis in V ,

fµ = f(e⃗µ) = f(aν
µe⃗

′
ν) = aν

µf(e⃗ ′
ν) ≡ aν

µf
′
ν , (2.14)

where f ′
ν ≡ f(e⃗ ′

ν) are again a set of numbers that we can construct given the
basis {e⃗ ′

ν} in V . Notice that under a change of basis in V , fµ transforms
covariantly, i.e. in the same manner as the change of basis in V .

Given a basis e⃗µ of V , we can define a dual basis for V ∗, which is the set
of covectors e⃗ ∗µ ∈ V ∗ such that

e⃗ ∗µ(e⃗ν) = δµ
ν . (2.15)

This is clearly a basis, since for any f ∈ V ∗,

f(x⃗) = xµfµ = xµfνδ
ν
µ = xµfν e⃗

∗ν(e⃗µ) = fν e⃗
∗ν(xµe⃗µ) , (2.16)
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19 I will generally stick with the mostly
minus convention for the Minkowski met-
ric. My apologies to mostly plus aficiona-
dos, but I’m just slightly more comfort-
able with the mostly minus convention at
this point.

or in other words,

f = fµe⃗
∗µ . (2.17)

We should therefore view fµ = f(e⃗µ) as the components of f under the induced
dual basis e⃗ ∗µ.

You should already have a sense that V and V ∗ are very closely related; in
fact, the map e⃗µ 7→ e⃗ ∗µ is an isomorphism, i.e. a map of every element in
V to another in V ∗ that preserves their respective relation to each other under
addition and scalar multiplication.

2.4 The Metric

So far, everything we have discussed has been about vector spaces. We are now
going to turn our attention to inner product spaces over R, where the additional
inner product structure is defined, giving us a way of talking about distances
and angles.

As a reminder, the inner product is a map ⟨·, ·⟩ : V × V → R that takes
two vectors in V , and spits out a number. Having chosen a basis {e⃗µ} for our
vector space V , we can now define a quantity known as the metric or metric
tensor gµν ,

gµν ≡ ⟨e⃗µ, e⃗ν⟩ . (2.18)

For Rn, for example, with the inner product given by the dot product, we have
simply gµν = δµν , while for Minkowski space, the metric is given by19

ηµν =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.19)

Knowing the metric fully defines the inner product, since

⟨x⃗, y⃗⟩ = ⟨xµe⃗µ, y
ν e⃗ν⟩ = gµνx

µyν . (2.20)

Moreover, the structure of the inner product also guarantees that gµν = gνµ, i.e.
gµν is symmetric. Another thing we can note is that as a matrix, gµνx

ν = 0
only if xν = 0 by the definition of the inner product; this means that gµν is
invertible. We can therefore define the inverse of the metric, which we denote
gµν , with

gµνg
νσ = gµνgνσ = δµ

σ . (2.21)

For now, this is just a relationship between matrices; we’ll come back and revisit
the metric when we have discussed tensors later on.

2.4.1 Raising and lowering indices

Let’s look at the expression in Eq. (2.20) more closely. We can reinterpret
⟨x⃗, y⃗⟩ = gµνx

µyν as (gµνx
µ)yν . With this rewriting, can think of (gµνx

µ) as
being the components of the object ⟨x⃗, ·⟩, which takes in a vector y⃗ and returns
⟨x⃗, y⃗⟩. In fact, ⟨x⃗, ·⟩ is an object in V ∗, mapping vectors in V to real numbers,
and can be written as ⟨x⃗, ·⟩ = gµνx

µe⃗ ∗ν , so that

gµνx
µe⃗ ∗ν(yσ e⃗σ) = gµνx

µyσδν
σ = gµνx

µyν = ⟨x⃗, y⃗⟩ . (2.22)
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Clearly then, gµνx
µ are indeed the components of ⟨x⃗, ·⟩ in the basis of V ∗

induced by our chosen basis of V , and therefore transforms covariantly.
If all that was a bit dense, the upshot is that, starting from a contravariant

quantity xµ, we can lower its index by defining

xν ≡ gµνx
µ , (2.23)

which 1) is a quantity that transforms covariantly (and so has a lower index),
and 2) can be contracted with a contravariant quantity to form a real number,
or a scalar or an invariant. Intuitively, it is one half of the inner product: you
need to put together a covariant and contravariant piece to obtain a scalar.

Multiplying Eq. (2.23) by gσν on both sides, we also find

gσνxν ≡ gσνgµνx
µ = gσνgνµx

µ = δσ
µx

µ = xσ , (2.24)

which shows that I can also raise an index by multiplying by the inverse tensor.
Ultimately, all I’m doing is switching between the components of the two objects

⟨x⃗, ·⟩ ↔ x⃗ , (2.25)

which are in 1-to-1 correspondence with each other between the isomorphic
vector spaces V and V ∗.

Finally, notice that every time we perform a contraction, we sum over one
upper and one lower index. This is because every contraction represents the
pairing of a function in V ∗, with a vector in V , and results in a scalar. Another
way of understanding this is that you want to pair up a contravariant with a
covariant quantity, so that you end up with a quantity that doesn’t transform,
i.e. a scalar. I have never encountered a situation where you want to sum over
the components of two objects which transform in the same way.

2.4.2 Example: Some Common Metrics

Let’s pause for a moment and take a look at some important examples.
To digest all of this information, let’s revisit R2 with all of this technology.

R2 is a 2D vector space, with vectors xie⃗i that look like, for example, 3e⃗x +2e⃗y,
where 3 and 2 are the components of the vector, and {e⃗x, e⃗y} is a chosen basis
for the space. R2 also comes with an inner product, which is the usual dot
product. In R2, we can choose a basis that is orthonormal, i.e. with a metric
given by

gij = ⟨e⃗i, e⃗j⟩ = e⃗i · e⃗j = δij . (2.26)

I can use this metric to raise and lower indices of covariant or contravariant
quantities, so for example

gijx
j = δijx

j = xi , (2.27)

but if you explicitly plug in the indices, you can see that x0 = x0 and x1 = x1,
which shows that the position of indices doesn’t matter in Rn. Inner products
between two vectors can be written in component form as

gijx
iyj = xjy

j , (2.28)

i.e. the sum of the product of individual components, as in the usual dot product.
You can think of xj as the components of ⟨x⃗, ·⟩. In R2, you can also think of
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20 What may be confusing is that
Eq. (2.30) and Eq. (2.32) look identi-
cal! But how we interpret what’s hap-
pening is different. In the first, each line
tells us how each basis vector is sepa-
rately rotated, so you’re looking out for
e⃗1 transforming into something else. But
in the second, it is the transformation of
the arrow denoted by (x1, x2) going into
(x′1, x′2) that we are interested in.

xj as a row matrix, which maps column vectors (which contain components of
a vector) to numbers by matrix multiplication.

Now let’s consider a basis change, given by e⃗ ′
i = aj

ie⃗j , where

aj
i =

(
cos θ sin θ

− sin θ cos θ

)
, (2.29)

where j indexes the row and i indexes the column. This is a clockwise rotation
of the basis vectors by some constant angle θ. Explicitly,

e⃗ ′
1 = cos θ e⃗1 − sin θ e⃗2 ,

e⃗ ′
2 = sin θ e⃗1 + cos θ e⃗2 . (2.30)

At the same time, for any vector x⃗ = xie⃗i, the coordinates xi transforms in the
opposite sense, i.e. x′i = (a−1)i

jx
j , where

(a−1)i
j =

(
cos θ − sin θ
sin θ cos θ

)
, (2.31)

so that

x′1 = cos θ x1 − sin θ x2

x′2 = sin θ x1 + cos θ x2 , (2.32)

which is instead a counterclockwise rotation of the components.20 You can
check that the vector itself, xie⃗i, remains unchanged. This is the same intuition
we had from Fig. 9.

We now graduate to something hopefully still familiar, but a little more
nontrivial: 4D Minkowski space, where the 0-dimension is time, and dimensions
1,2,3 are spatial dimensions. The vectors that live in this space are called 4-
vectors, and they are of the form xµe⃗µ, where {e⃗0, e⃗1, e⃗2, e⃗3} forms a basis.
Once again, we have an inner product and an associated metric; we can choose
a basis such that the metric is the Minkowski metric

ηµν = ⟨e⃗i, e⃗j⟩ , (2.33)

where

ηµν =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.34)

You can verify for yourself that ηµν , the inverse of the matrix, has the same
entries as ηµν .

Once again, I can lower indices by hitting a contravariant quantity with the
metric, e.g. xµ = ηµνx

ν , but this time, you can see that x0 = x0, and xi = −xi.
Therefore, the position of the indices does matter in Minkowski space, and we
need to be a little more careful. You can still think of xµ as the components
of ⟨x⃗, ·⟩, but xµ is now no longer just a simple transposition (i.e. a row matrix)
relative to xµ (which we can view as a column matrix); you also need to change
the sign of the spatial components. Inner products can be written, as before, as

gµνx
µyν = xνy

ν , (2.35)

but note that because of the negative signs in the metric, you are no longer
guaranteed that the inner product is positive.
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We can again consider basis changes such as the Lorentz boost, given by
e⃗ ′

ν = Λµ
ν e⃗µ, where for example

Λµ
ν =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 , (2.36)

where |β| < 1 and γ = (1 − β2)−1/2. Under this transformation,

e⃗ ′
0 = γe⃗0 + βγe⃗1

e⃗ ′
1 = βγe⃗0 + γe⃗1

e⃗ ′
2 = e⃗2

e⃗ ′
3 = e⃗3 . (2.37)

On the other hand, the coordinates transform as x′ν = (Λ−1)ν
µx

µ, where

(Λ−1)ν
µ =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

 , (2.38)

i.e.

x′0 = γx0 − βγx1

x′1 = −βγx0 + γx1

x′2 = x2

x′3 = x3 . (2.39)

2.5 Tensors

We have now seen vector spaces and their dual spaces. We can now start
defining even more general objects by putting vector spaces and dual spaces
together!

Consider three vector spaces U , V and W over F. We can define the
tensor product of spaces such as V ⊗W , or even U ⊗ V ⊗W .

1. It is distributive, i.e. for a⃗ ∈ U and x⃗ ∈ V ,

a⃗⊗ (x⃗+ y⃗) = a⃗⊗ x⃗+ a⃗⊗ y⃗ ,

(⃗a+ b⃗) ⊗ x⃗ = a⃗⊗ x⃗+ b⃗⊗ x⃗ ; (2.40)

2. It is associative, so that we can chain together three vector spaces
like U ⊗V ⊗W without worrying about whether it’s (U ⊗V )⊗W
or U ⊗ (V ⊗W );

3. It commutes with F, i.e.

λ(⃗a⊗ x⃗) = (λa⃗) ⊗ x⃗ = a⃗⊗ (λx⃗) , (2.41)

but it is not commutative over the vectors, i.e. a⃗ ⊗ b⃗ ̸= b⃗ ⊗ a⃗ in
general.

Consider a vector space V with a basis {e⃗µ}. This basis induces a basis in
tensor products of V and V ∗ in the natural way; for example, in V ∗ ⊗ V ∗, this

26



induces the basis e⃗ ∗µ ⊗ e⃗ ∗ν . These basis vectors act on pairs of basis vectors,
(e⃗α, e⃗β), in the expected way, so for our V ∗ ⊗ V ∗ example, we get

e⃗ ∗µ ⊗ e⃗ ∗ν(e⃗α, e⃗β) = δµ
αδ

ν
β . (2.42)

It can also act on elements of V ⊗ V in a manner that you might also expect:

e⃗ ∗µ ⊗ e⃗ ∗ν(e⃗α ⊗ e⃗β) = δµ
αδ

ν
β . (2.43)

A good example of what a tensor is and what it does is the metric itself, which
we often refer to as metric tensor. It is a tensor in V ∗ ⊗ V ∗,

g = gµν e⃗
∗µ ⊗ e⃗ ∗ν . (2.44)

It acts on pairs of vectors x⃗ and y⃗ and returns a number in F:

g(x⃗, y⃗) = gµν e⃗
∗µ ⊗ e⃗ ∗ν(xαe⃗α, y

β e⃗β) = gµνx
αyβδµ

αδ
ν
β = gµνx

µyν = xµyµ .

(2.45)

As with vectors and covectors, once we’ve picked a basis, we will only need to
worry about the components, with the understanding that the object itself is
specified by both the components and the basis, and that the spaces act in the
natural way that you expect.

Under a change of basis {e⃗µ} 7→ {e⃗ ′
µ}, the metric itself undergoes a trans-

formation:

gµν 7→ g′
µν = ⟨e⃗ ′

µ, e⃗
′
ν⟩ = ⟨aσ

µe⃗σ, a
λ

ν e⃗λ⟩ = aσ
µa

λ
νgσλ . (2.46)

Each lower index is acted on by the change-of-basis transformation, with each
transformation given by a covariant transformation. We say therefore that gµν

a doubly covariant tensor, which explains why we often also refer to gµν as
the metric tensor. You can see now that we can look into objects with more
general number of indices, say Qαβ

γδϵ, which transforms as

Q′αβ
γδϵ = (a−1)α

α′(a−1)β
β′a

γ′

γa
δ′

δa
ϵ′

ϵQ
α′β′

γ′δ′ϵ′ , (2.47)

which is a doubly contravariant, triply covariant tensor, or a type (2, 3) tensor.
The total number of indices is what we call the rank of the tensor. Notice how
when we were writing down the transformation of Qαβ

γδϵ, the indices lined up:
we contracted upper indices with lower indices, so that under each application
of the change-of-basis transformation, upper indices remain upper indices.

Another thing you will notice is that I have been very careful with the relative
positions of the tensors. This is good practice, but very often you’ll find people
get sloppy and collapse all the indices when they think the notation is obvious.
The one tensor where this is always okay is the Kronecker delta δµ

ν , since we
always have this tensor returning 1 if µ = ν and 0 if µ ̸= ν regardless of the
position of the indices.

(End of Lecture: Monday Sep 23 2024)

2.5.1 Tensor algebra

So what can we do with tensors? Well, we can add tensors together, but we
have to ensure that you’re adding things that are transforming with a change
of bases in the same way. So for example

Aµ
νλ = Bµτ

νλτ + Cµ
νλ (2.48)
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21 A group G is a set of elements with an
operation ·, that obeys the following: 1)
associativity, i.e. (a · b) · c = a · (b · c) for
all a, b, c ∈ G; 2) it contains an identity
element e in G such that a · e = e · a =
a, and 3) every element a in G has an
inverse b, such that a · b = b · a = e.

is legal, but

Aµ
νλ

wrong= Bν
µλ + Cµ

νλσσ +Dµ
νλτ (2.49)

makes no sense.
We can multiply tensors together. Suppose we have tensors Aµ

νλ and
Bµ

νλτ , which are tensors of type (1, 2) and (1, 3) respectively. Then, we can
multiply them together to get

Cαβ
νλρστ = Aα

νλB
β

ρστ , (2.50)

which is a tensor of type (2, 5).
You can also contract indices, or equivalently, multiply tensors by the metric,

so that for example

Cαβ
αβρστ = gαλgβµCλµαβρστ (2.51)

is now a tensor of type (0, 3). Contracting two vectors is a special case that
leads to a real number, also called a scalar or sometimes an invariant, which
does not transform under a change of basis. Let me stress again: you must
contract one upper and one lower index! You can write down objects like Bαββ ,
but these objects are not tensors.

2.5.2 Example: Rotations and Lorentz transformations

Let’s study the properties of basis transformations aµ
ν that leave the metric

invariant. In Rn, these are the transformations such that angles and lengths are
all preserved. Under the transformation aµ

ν , the metric tensor transforms as

gµν 7→ aσ
µa

λ
νgσλ , (2.52)

Transformations O that leave the metric invariant are therefore of the form

Oσ
µgσλO

λ
ν = gµν . (2.53)

In Rn, if we start with the canonical metric gσλ = δσλ, then these transforma-
tions must satisfy

Oσ
µδσλO

λ
ν = δµν =⇒ Oλ

µOλν = δµν =⇒ (O−1) λ
µ = Oλ

µ . (2.54)

Therefore, as matrices, we must have O−1 = OT. The set of all such matrices
is the orthogonal matrices, which can be thought of as a group called O(n),
called the orthogonal group.21 This group is made up of matrices correspond-
ing to rotations and reflections. The group containing matrices corresponding
only to rotations is called the special orthogonal group, SO(n).

In Minkowski space, we have instead

Λσ
µησλΛλ

ν = ηµν . (2.55)

The Λ matrices also form a group that we call the Lorentz group, O(1, 3)
for spacetime. The set of all Lorentz transformations (both boosts and spatial
rotations), as well as time reversal and reflections, make up this group. Again,
the group with just boosts and rotations is called SO(1, 3).

2.5.3 Example: Linear transformations

In the crash course in linear algebra, I mentioned the concept of linear transfor-
mations briefly. Let’s linear transformations M : V → V , mapping vectors in a
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vector space V over a field F to other vectors in V . The linear transformation
must satisfy the following property:

M(λx⃗+ µy⃗) = λM(x⃗) + µM(y⃗) (2.56)

for all x⃗, y⃗ ∈ V , and λ, µ ∈ F. This object exists independently of any basis, but
given a basis, it can be represented by a matrix Mµ

ν , obtained by examining
the action of the transformation on the basis vectors:

M(e⃗µ) = Mν
µ e⃗ν . (2.57)

Suppose M acting on some arbitrary vector x⃗ = xµe⃗µ gives the result y⃗ = yν e⃗ν .
We can see however that

y⃗ = yν e⃗ν = M(xµe⃗µ) = xµM(e⃗µ) = Mν
µx

µe⃗ν , (2.58)

or in other words, the components transform as

yν = Mν
µx

µ . (2.59)

We can therefore see that given a basis, M behaves just like matrix multiplica-
tion, as we already knew to be true from linear algebra.

In another basis related to the old one via e⃗ν = aσ
ν e⃗

′
σ, we see that

M(e⃗µ) = Mν
µ e⃗ν = Mν

µ a
σ

ν e⃗
′
σ , (2.60)

but also

M(e⃗µ) = M(aλ
µe⃗

′
λ) = aλ

µM(e⃗ ′
λ) =⇒ M(e⃗ ′

λ) = (a−1)µ
λM(e⃗µ) . (2.61)

Therefore, in the new basis,

M(e⃗ ′
λ) = aσ

νM
ν
µ (a−1)µ

λe⃗
′
σ , (2.62)

i.e. under the change of basis,

Mσ
λ 7→ aσ

νM
ν
µ (a−1)µ

λ , (2.63)

which is the transformation rule for type (1,1) tensors, and also what you may be
familiar with in linear algebra about the change of basis of linear transformations.

Compare this with the transformation rule for the metric tensor,

gµν 7→ aσ
µa

λ
νgσλ , (2.64)

and you’ll notice a big difference! And that’s because the metric tensor is a type
(0,2) tensor. The key lesson here is that 2D tensors are much more than just
matrices; while it can be useful to write out tensor components as matrices, one
needs to keep in mind that tensors also come equipped with a transformation
rule!

2.5.4 Invariants of 2D tensors

Invariants are extremely useful: they don’t transform under a basis change, and
so they’re very easy to deal with. They’re also giving you information about the
tensor that is independent of the basis. The first commonly discussed invariant
of 2D tensors are the determinant, which you can compute from the matrix
representation of the tensor; we will discuss this in much greater detail after
we’ve built up some machinery to discuss it. The second invariant is called
the trace. In matrix language, this is simply the sum of the terms along the
diagonal. It’s hard to understand how this could be an invariant from the matrix
perspective, but in terms of indices, it is simply given by
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22 This explains why the indices are al-
most never distinguished in the literature:
both δµ

ν and δ µ
ν act the same way on

any object: just replace µ with ν or vice-
versa.
23 Sometimes, people talk about the (0,2)
tensor δµν = gµλδ

λ
ν = gµν , which as you

can see is really the metric tensor (whose
coordinates can change with a change of
basis). I will usually avoid using δµν , un-
less we are talking about Rn, where the
index position doesn’t matter.

tr(M) = gµνMµν = gµνM
µν = δν

µM
µ
ν = Mµ

µ , (2.65)

where I’m showing you how to obtain the trace for 2D tensors of all types.

2.5.5 Symmetric and antisymmetric tensors

A tensor is said to be symmetric in some indices if the tensor values are the
same when the two indices are swapped. For example, we say that Sµν is a
symmetric tensor if Sµν = Sνµ. Note that we have also

Sµ
ν = gναS

µα = gναS
αµ = S µ

ν , (2.66)

and so the position of the indices doesn’t matter in determining whether a tensor
is symmetric or not. Moreover, under a change of basis,

S′αβ = aα
µa

β
νS

µν = aα
µa

β
νS

νµ = S′βα , (2.67)

and so a symmetric matrix stays symmetric under a change of basis.
We can similarly define a tensor to be antisymmetric in some indices if,

under a swap of the two indices, the tensor picks up a minus sign, e.g. Aµν =
−Aνµ. Again, a tensor that is antisymmetric when indices are in one position
are still antisymmetric if the indices are raised or lowered; they also remain
antisymmetric under an arbitrary change of basis.

The contraction of a symmetric and an antisymmetric tensor is always zero,
since e.g.

SµνA
µν = SνµA

µν = −SνµA
νµ = −SµνA

µν = 0 , (2.68)

where in the second last step I have simply relabeled the contracted indices
(since they are dummy indices), and noted that SµνA

µν is equal to its negative,
and therefore has to be zero.

Every tensor can always be decomposed into a symmetric piece and an
antisymmetric piece. To see this, take an arbitrary tensor Bµν . We can always
rewrite this as

Bµν = 1
2(Bµν +Bνµ) + 1

2(Bµν −Bνµ) ≡ Sµν +Aµν , (2.69)

where Sµν = (Bµν + Bνµ)/2 a symmetric tensor, and Aµν = (Bµν − Bνµ)/2
is antisymmetric.

2.5.6 Kronecker and Levi-Civita tensors

We’ll now discuss two special tensors that arise very commonly in tensor algebra.
The first of them, the Kronecker delta δµ

ν , is defined as a (1,1) tensor that,
in some basis, is unity if µ = ν and zero otherwise. Let’s check what happens
under an arbitrary change of basis:

δµ
ν 7→ (a−1)λ

νa
µ

σδ
σ
λ = δµ

ν . (2.70)

In other words, the Kronecker delta always has the same numerical components
in all coordinate systems.22 23

The Levi-Civita symbol ϵµ1µ2···µn
is defined as an object with n indices such

that ϵ12···n = 1, and ϵ···ip···iq··· = −ϵ···iq···ip···, i.e. every time two indices are
exchanged, the result differs by a minus sign. This definition guarantees that
when two indices are equal, the Levi-Civita symbol is zero. One particularly
important use-case of the Levi-Civita symbol is in expressing antisymmetric
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24 An easy way to see that εµ1···µn needs
to pick up a sign under non-orientation-
preserving transformations is by consid-
ering what happens to a cross-product
under reflection, where x⃗ 7→ −x⃗. With
the sign flip, εijkxjyk 7→ −εijkxjyk as
needed, since the final vector as a result
of the cross product also needs to pick up
a minus sign under reflection.
25 You might have heard a joke about how
‘a tensor is something that transforms like
a tensor’. We can always exclude some
class of basis changes from consideration
to make a class of objects well-behaved
and tensor-like.

quantities in component form. For example, the cross product a⃗ × b⃗ can
be written as

(⃗a× b⃗)k = ϵijka
ibj . (2.71)

The determinant of an n × n matrix M can likewise be written as (assuming
summation over repeated indices)

ϵµ1···µn
det(M) = ϵν1···νn

Mν1
µ1

· · ·Mνn
µn

. (2.72)

Let’s suppose there is an n-dimensional tensor ηµ1µ2···µn
whose components

coincide with ϵµ1µ2···µn in one particular basis. Then under a change of basis,

ηµ1···µn 7→ aν1
µ1
aν2

µ2
· · · aνn

µn
ϵν1···νn

= ϵµ1···µn
det(a) = ηµ1···µn

det(a) . (2.73)

We see that the Levi-Civita symbol is almost a tensor whose components do
not transform, up to a pesky determinant.

At this point, let’s examine the determinant of the metric tensor itself, g ≡
det(gµν). We see that under the same transformation, the determinant after
the change of basis is

g′ ≡ det(g′
µν) = det(aλ

µa
σ

νgλσ) = (det(a))2g , (2.74)

and therefore the quantity
√

|g′| = |det(a)|
√

|g|; note that the absolute value
is important, since the metric tensor can have negative determinant (e.g. in
Minkowski space!). Now let’s consider the object

εµ1µ2···µn
=
√

|g|ϵµ1µ2···µn
(2.75)

Under the same transformation, we now see that provided det(a) > 0, which
are referred to as orientation preserving changes of basis,24

εµ1···µn
7→
√

|g|det(a)ϵµ1···µn
=
√

|g′|ϵµ1···µn
, (2.76)

and so once again, we find a tensor known as the Levi-Civita tensor εµ1···µn

that always has the same form in any basis (although we must evaluate the
determinant of the transformed metric, which is in general different for each
basis).

If we limit ourselves to rotations in Rn and boosts (and rotations) in Minkowski
space, then εµ1···µn

= ϵµ1···µn
is a good old tensor. However, if we include trans-

formations like reflections, for example, then we need a lot more care.25

2.5.7 Isotropic Cartesian tensors

Another special tensor that we’ll now discuss is the isotropic, Cartesian tensor.
Consider a Cartesian coordinate system with orthonormal basis vectors, so that
gij = δij , the Kronecker delta function. We looked at the set of orthogonal
matrices form what we called O(n), which are matrices with the property that
O−1 = OT. When we perform a change of basis under these matrices, we found
that this leaves the metric invariant, since

g′
kl = Oi

kO
j
lδij = OjkO

j
l = OT

kjO
j
l = δkl . (2.77)

You can check that the same thing is true for products of δij , for example
Tijklmn = δijδklδmn.

What is the most general form a tensor of rank m that is invariant under an
O(n) transformation? These are important questions that have tedious answers
to them, and so we won’t try to prove these results (see for example Ref. [4],
but rather just state them. The most general O(n) invariant tensor of rank 4
Iijkl is
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Iijkl = αδijδkl + βδikδlj + γδilδjk (2.78)

for some numbers α, β and γ.
How about for SO(n), which is simply all the orthogonal matrices with

determinant 1, corresponding to just rotations, and not reflections? We can
check, for example, that ϵijk is invariant under an SO(3) transformation O,
since

ϵ′lmn = Oi
lO

j
mO

k
nϵijk

= ϵlmndet(O)
= ϵlmn , (2.79)

since by definition, an SO(n) matrix has determinant 1. With this, it’s not
surprising that, for example, the most general SO(4)-invariant, rank-4 tensor
Jijkl is

Jijkl = αδijδkl + βδilδjk + γδilδjk + λϵijkl .

(End of Lecture: Wednesday Sep 25 2024)

2.6 Vectors and Tensors on Manifolds

We are now armed and ready to do calculus on surfaces that aren’t just flat
spaces like Rn, or even flat spacetimes like Minkowski space. We want to build
up the machinery to be able to do calculus on what are called manifolds.

So what are manifolds? There’s a lot of technical set-up that Carroll goes
through in his notes/textbook, while Stone and Goldbart basically condenses it
down into a paragraph of dense text. But for our purposes the details don’t
really matter. A manifold is something that, if you zoom in enough, looks like
Rn or Minkowski space, R1,3 (from here on, I will include Minkowski space when
I say Rn), in the sense that you can map patches of a manifold to these spaces
in a completely invertible way. Spheres and tori are examples of manifolds; a
line ending on a plane is an example that is not a manifold. The 2D surface
of a cone is also a manifold, but there’s something badly behaved about the
tip of the cone: curves that go through it have to under a sudden change in
direction, and so calculus on the cone sounds problematic near the tip. We will
in general only care about differentiable manifolds, which do not have such
troubling singularities.

Note that we only need to be able to map the manifold into Rn one patch
at a time; manifolds in general do not usually allow for the entire manifold to
be mapped at one go into Rn. Take for example the sphere: any patch of the
sphere can be mapped without trouble onto R2, but not the whole sphere at
one go. This is why map making is so complicated!

So how do we set ourselves up to do calculus on manifolds? There are a few
things to consider:

1. One thing we take for granted in Rn, however, is that vectors can “slide
around” on Rn trivially, allowing us to compare vectors from one point in
Rn with another without much thought. This is very different on arbitrary
manifolds however; on a sphere like to Earth, sliding a vector around in a
closed loop causes the vector to rotate with respect to itself (see Fig. 10)!
We therefore have to be extremely careful about sliding vectors around,
or comparing vectors across different points. As such, vectors on general
manifolds are therefore objects that belong to each particular point on the
manifold.
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Figure 10: Sliding a vector around on a sphere
causes it to rotate with respect to itself!

Increasing λ

p

Increasing η

d
dλ

d
dη

Figure 11: Directional derivatives as elements of
the tangent space Tp.

2. We know that any manifold looks locally like Rn. Picture a sphere for
example: just like on Earth, every point locally looks like R2. Instinctively,
we understand that at every point, we can set up an n-dimensional vector
space with a metric. This is known as the tangent space: the space of all
vectors at a point on a manifold. With the picture of the Earth in mind,
the tangent space is a 2D vector space with vectors tangent to the surface
of the Earth. But keep in mind that this picture is misleading, because the
“arrows” that we have in our heads point out into outer space, whereas
a general manifold doesn’t have to embedded into a higher dimensional
space at all.

3. Which brings us to our next point. We also want to find a way to describe
the n-dimensional vector space that doesn’t depend on a choice of basis
or an embedding like the Earth into outer space. A vector in the tangent
space should be an object that knows only about the manifold itself, and
doesn’t depend on the choice of basis. Of course, we will often want to
choose a basis to calculate things, but the definition of the space should
be basis independent.

2.6.1 Tangent spaces

We’ll now try to put this intuition on solid mathematical ground. To properly
define the tangent space at the point p on a manifold M , let’s consider the set
of all smooth functions f : M → R. Take any curve on the manifold passing
through p parametrized by λ. Then at point p, each curve defines an operator
d/dλ that maps f 7→ df/dλ, which is simply the directional derivative at
the point of f along the curve. The tangent space Tp at the point p is then
the space of directional derivative operators d/dλ through p. This intuition is
illustrated in Fig. 11.

We can check is that the directional derivatives do form a vector space. A lot
of the desired properties in the definition in Sec. 2.1.1 follow from the properties
of derivatives; you can check many of them yourself. Most importantly, the
linear combination of any two directional derivatives, a(d/dλ) + b(d/dη), is
itself a perfectly good directional derivative, obeying all the expected rules of
the derivative, e.g. the product rule, and so the vector space is closed on itself.

Let’s move on next to constructing a basis for Tp. By definition of a manifold
M , we can zoom in on a small patch around p, which looks like Rn, where n
is the dimension of M . On this patch, I can define coordinates xµ on this Rn-
like patch, so that for any function f : M → R on this patch, the directional
derivative is simply

df

dλ
= ∂f

∂xµ

dxµ

dλ
, (2.80)

as expected from the chain rule. This shows that any element of Tp can be
written as

d

dλ
= dxµ

dλ
∂µ , (2.81)

where we’ve defined ∂µ ≡ ∂/∂xµ. Notice that this has the form of yµe⃗µ as
we have come to expect from vectors in a vector space; we should therefore
interpret dxµ/dλ as components, and ∂µ as a basis. The physical intuition is
very similar to what is shown in Fig. 11 once again, except now you should
imagine throwing on a small R2 surface with a Cartesian grid, which locally
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26 Note that Carroll adopts the notation
xµ′ instead, whereas SG avoids using x′µ,
using zµ to denote the components in the
new basis, but then using the notation ∂′

µ

to denote differentiation in the new basis.
Every notation is nonideal in its own way.

defines a coordinate system xµ, and which then allows Tp to inherit the basis
{∂µ}. This is known as a coordinate basis for Tp. Keep in mind that you are
not limited to choosing a Cartesian basis! You are free to choose, for example,
polar coordinates (r, θ) in R2, in which case your basis is {∂r, ∂θ}; this basis is
neither normalized nor orthogonal, but it is perfectly acceptable.

What happens under a change of coordinates, say switching between Carte-
sian and polar coordinates on R2? That induces also a change of basis. Suppose
we perform a change of coordinates from xµ to x′µ; all of the derivatives then
transform as26

∂′
ν ≡ ∂

∂x′ν = ∂xµ

∂x′ν ∂µ . (2.82)

A simple example is the transformation from polar to Cartesian coordinates,
given by x = r cos θ and y = r sin θ, so that

∂r = ∂x

∂r
∂x + ∂y

∂r
∂y = cos θ · ∂x + sin θ · ∂y , (2.83)

∂θ = ∂x

∂θ
∂x + ∂y

∂θ
∂y = −r sin θ · ∂x + r cos θ · ∂y . (2.84)

Given this, any arbitrary V ∈ Tp can be written as V = V µ∂µ given any
choice of coordinate system. Under a change of coordinates, becomes

V µ∂µ = V ′ν∂′
ν = V ′ν ∂x

µ

∂x′ν ∂µ , (2.85)

and therefore

V ′ν = ∂x′ν

∂xµ
V µ . (2.86)

Comparing Eqs. (2.82) and (2.86), we can see that the components of the vector
transforms contravariantly, while the basis vectors transform covariantly. As
before, we’ll move away rapidly from the formal beginnings we are at here,
and will almost entirely deal with the components of vector, leaving the basis
implicit. It is therefore common to say that “vectors transform contravariantly”
according to Eq. (2.86), even though we really just mean the components.

Finally, we call the collection of all the tangent spaces at every point p on
M the tangent bundle.

(End of Lecture: Monday Sep 30 2024)

2.6.2 Cotangent spaces, tensors and the metric

As we did before, we can now proceed to look at the dual of the tangent space
T ∗

p at the point p on M , which we call the cotangent space. This is a vector
space of linear maps ω : Tp → R, and the elements that live in T ∗

p are called
one-forms. As before, a choice of basis {∂µ} in Tp induces a basis on T ∗

p , which
we write suggestively as {dxµ}, such that

dxµ(∂ν) = ∂xµ

∂xν
= δµ

ν . (2.87)

Any arbitrary ω ∈ T ∗
p can therefore be written as ω = ωµdxµ. One way to think

of elements in T ∗
p is again to go back to the space of functions f : M → R that
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pass through the point p, and to view elements in T ∗
p as df , the gradient of the

function, so that given a coordinate system,

df = ∂f

∂xµ
dxµ . (2.88)

Under a change of basis, we can see that the basis vectors

dx′ν = ∂x′ν

∂xµ
dxµ , (2.89)

which transform contravariantly, and the components

ω′
ν = ∂xµ

∂x′
ν

ωµ , (2.90)

transform covariantly. As usual, we will only usually see the components dis-
cussed when talk about one-forms.

Similarly, the collection of all cotangent spaces at every point p on M is
called the cotangent bundle.

We can also define tensors given the tangent space Tp and the cotangent
space T ∗

p by performing a series of tensor products. Given a coordinate system,
we can define objects like

T = T
µ1···µj

ν1···νk ∂µ1 ⊗ · · · ⊗ ∂µj
⊗ dxν1 ⊗ · · · ⊗ dxνk , (2.91)

that can act on some combination of vectors, one-forms or tensors in the same
manner as before. Once again, the coordinates transform under a change of
coordinate system as e.g.

T
′α1···αj

β1···βk
= ∂xα1

∂xµ1
· · · ∂x

αj

∂xµj

∂xν1

∂xβ1
· · · ∂x

νk

∂xβk
T

µ1···µj
ν1···νk . (2.92)

Very often, however, it is better to take ∂µ and dxµ and apply the change of
coordinates we are familiar with from calculus, treating ∂µ as a partial derivative
and dxµ as an infinitesimal quantity respectively.

An extremely important rank-2 tensor that you’re already familiar with is the
metric tensor, which given some choice of coordinate system can be written as
ds2 = gµνdxµ ⊗ dxν . The components of the metric must be symmetric (given
the properties of the inner product), and so even though the tensor product does
not commute, it is very common to see the metric written as gµνdxµdxν ; you
should keep in mind that expressions like 2dxdy really should be thought of as
dx ⊗ dy + dy ⊗ dx. Just like any (0, 2) tensor, ds2 takes in two vectors, and
spits out a real number, with

ds2(V,W ) = gµνV
µW ν , (2.93)

which should be familiar to you from our previous discussions about the metric.
A very simple example of a metric is the typical Euclidean R3 metric,

ds2 = dx2 + dy2 + dz2 , (2.94)

which under a transformation from Cartesian to spherical coordinates gives

ds2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2 . (2.95)
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These two metrics are really exactly the same thing, referring to the same inner
product space, just written in a different coordinate basis. Another slightly less
trivial metric is the metric of a 2-sphere,

ds2 = dθ2 + sin2 θ dϕ2 , (2.96)

which is emphatically different from the metric of flat, Euclidean R2. The metric
contains all relevant information about the curvature of the manifold. While we
will unfortunately not have time to discuss curvature in any detail, you are now
armed with all the tools necessary to talk about curvature and general relativity.

2.7 Differentiation on Manifolds

We’re now finally ready to start tackling the problem of doing calculus on man-
ifolds, starting with differentiation. This is a vast area of knowledge that we do
not have time to fully explore; instead, we will take a look at two different types
of derivatives we can take on a manifold, and leave a more complete treatment
of this topic to more advanced courses e.g. in general relativity.

Going forward, we will now turn our attention to tensor fields over a manifold
M that we can use a coordinate system given by xµ to describe. This defines a
tensor at every point on the manifold, all describable by components and basis
vectors given by the coordinate basis induced by xµ.

We have already seen that given a scalar field f defined everywhere on some
manifold M , on which we can assign a coordinate system given by xµ, we can
construct the gradient

df = ∂f

∂xµ
dxµ , (2.97)

which is an object that lives in T ∗
p , and is therefore a well-behaved one-form.

However, now suppose instead we have a one-form field Vν defined everywhere
on the same manifold M . If we take the gradient of this object, ∂µVν , we do
not in general obtain a tensor. This is because under a change of coordinates,
we find

∂′
αW

′
β = ∂xµ

∂x′α ∂µ

(
∂xν

∂x′βWν

)
= ∂xµ

∂x′α
∂xν

∂x′β ∂µWν +Wν
∂xµ

∂x′α · ∂

∂xµ

∂xν

∂x′β . (2.98)

If the second term wasn’t there, we would have obtained an honest-to-goodness
(0, 2) tensor, but unfortunately that’s not what we have. Objects like ∂µWν are
therefore not tensors in general, and are coordinate-dependent objects, and not
the coordinate-independent objects that we want tensors to be. This shouldn’t
have come as too much of a surprise; we began our discussion of manifolds
by emphasizing that vectors and one-forms are very much objects that are tied
to the tangent space at point p, whereas the gradient of a vector or one-form
naturally means subtracting vectors between nearby points, which we need to
define carefully.

We therefore have to work a bit harder to define operations that look like
derivatives on manifolds. It turns out that there are several operations that
behave like derivatives on the manifold; in this course, we will only have time
to look at two of them: the Lie derivative, and the exterior derivative. We
will leave the covariant derivative to courses focused on classical and quantum
field theories to explore.
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2.7.1 The Lie derivative

We saw earlier that vector fields X ≡ Xµ∂µ on a manifold M can be thought
of as directional derivatives acting on functions on the manifold M , i.e. X(f) =
Xµ∂µf , the directional derivative of f in the direction of Xµ. Consider yet
another vector field Y ≡ Y µ∂µ, and define the Lie bracket

[X,Y ](f) ≡ X(Y (f)) − Y (X(f)) . (2.99)

In your problem set, you will prove that the following statements about the Lie
bracket are true:

1. The Lie bracket is linear, i.e. for f, g functions on M and a, b real numbers,

[X,Y ](af + bg) = a[X,Y ](f) + b[X,Y ](g) . (2.100)

2. The Lie bracket obeys Leibniz’s rule, i.e.

[X,Y ](fg) = f [X,Y ](g) + g[X,Y ](f) . (2.101)

3. In terms of the components of X and Y , we can write

[X,Y ]µ = Xν∂νY
µ − Y ν∂νX

µ . (2.102)

4. [X,Y ]µ transforms under a change of coordinates as a vector.

What does the Lie bracket represent? For a given vector field Y , we can
define the flow associated with Y as the map that takes a point xµ

0 and maps
it to x(t) by solving

dxµ

dt
= Y µ (2.103)

with initial condition xµ(0) = xµ
0 . In other words, the vector field Y can be

thought of as a velocity field of a flowing fluid, with x riding along with the
fluid. Now consider two vector fields X and Y . Starting at a point, flow along
X for some small time t, and then along Y for some small time s. Now, try
to undo the flow by now flowing along −X for some time t again, and along
−Y for some time s. The Lie bracket tells you how far away you are after this
procedure from the starting point: you will miss by δxµ = st[X,Y ]µ as s and t
go to zero.

To get a better sense of what the Lie bracket is doing, let’s consider R2 with
polar coordinates (r, ϕ), with the vector fields

A = 1
r
∂ϕ , B = ∂r . (2.104)

The flow lines on the 2D-plane corresponds to circular paths around the origin
for A, and radial lines outward for B. The Lie bracket for these vector fields is

[A,B] = 1
r
∂ϕ∂r − ∂r

(
1
r
∂ϕ

)
= 1
r2 ∂ϕ . (2.105)

We can see that if we take a little circuit where we flow along A over some time
t, followed by B over some time s, and then back along −A over time t and
then along −B over time −s, we find that

δr = 0 , δϕ = t

r
− t

r + s
= ts

r2 = st[A,B]θ . (2.106)

37



We are now ready to define an operation called the Lie derivative LX along
some vector field X. It acts on a scalar function f through X itself, i.e.

LXf ≡ X(f) = Xµ∂µf , (2.107)

which is, once again, the directional derivative of f along X. Next, on a vector
field Y , it acts via the Lie bracket, i.e.

LXY ≡ [X,Y ] . (2.108)

We can now deduce the action of the Lie derivative on more complicated objects
by ensuring that the Lie derivative respects 1) linearity, with LX(aT + bS) =
aLXT + bLXS, and 2) Leibniz’s rule, i.e. the product rule, LX(T ⊗ S) =
(LXT ) ⊗ S + T ⊗ (LXS).

For example, to see how the Lie derivative acts on a one-form ωµ, we see
that given a vector field V µ, the Lie derivative should act on the object ωµV

µ

in the following manner:

LX(ωµV
µ) = Xν∂

ν(ωµV
µ) = Xν(V µ∂νωµ + ωµ∂

νV µ) . (2.109)

On the other hand, Leibniz’s rule requires

LX(ωµV
µ) = V µLXωµ + ωµLXV

µ = V µLXωµ + ωµ[X,V ]µ

= V µLXωµ + ωµ(Xν∂νV
µ − V ν∂νX

µ) .
(2.110)

Comparing both expressions, we find

V µLXωµ = XνV
µ∂νωµ + ωµV

ν∂νX
µ =⇒ LXωµ = Xν∂

νωµ + ων∂µX
ν .

(2.111)

You can check that LXωµ transforms as a one-form; in fact, the Lie derivative
of any (k, l)-tensor always transforms as a (k, l)-tensor.

Of particular importance is the Lie derivative of (0, 2)-tensors such as the
metric, which reads (and you will prove in your problem set)

(LXg)µν = Xα∂αgµν + gµα∂νX
α + gαν∂µX

α . (2.112)

Let’s compare this with what happens to the metric gµν(x)dxµ ⊗ dxν when we
make a displacement xα 7→ xα + ϵXα in the direction of the vector field X.
Under such a displacement, we have

dxµ 7→ dxµ + ϵ∂βX
µ · dxβ ,

gµν 7→ gµν + ∂βgµν · ϵXβ . (2.113)

Therefore,

gµν(x) dxµ ⊗ dxν 7→gµν(x) dxµ ⊗ dxν + ϵXβ∂βgµν dxµ ⊗ dxν

+ ϵgµν

(
∂βX

µ dxβ ⊗ dxν + ∂βX
ν dxµ ⊗ dxβ

)
=
[
gµν + ϵ

(
Xβ∂βgµν + gβν∂µX

β + gµβ∂νX
β
)]

dxµ ⊗ dxν

= (gµν + ϵ(LXg)µν) dxµ ⊗ dxν . (2.114)

Therefore, for an infinitesimal displacement along a vector field X, the metric
changes by ϵLXg. In particular, if LXg = 0, then the metric is preserved. X
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is said to be a Killing field, and indicates an existence of an isometry of the
manifold, a transformation of the manifold that preserves distances. You should
have in your mind a field indicating how points transform if a sphere is rotated
about any axis, for example, as an example of a Killing field.

(End of Lecture: Monday Oct 7 2024)

2.7.2 Differential forms and the wedge product

Before we can move on to the next derivative operation, we need to introduce
a special class of tensors known as differential forms, or simply forms. These
are simply (0, p) tensors that are completely antisymmetric. Thus, a scalar is
a 0-form, a co-vector is a one-form—a term we have already been consistently
using—and, for example, the Levi-Civita tensor εµνρσ is a 4-form.

To make differential forms starting from one-forms, we can define a new
operator called the wedge product; we can then take two forms ω ∈ T ∗

p and
η ∈ T ∗

p and construct ω∧η, a higher order form. Suppose in a coordinate basis,
ω = ωµ1···µp

dxµ1 ⊗ · · · ⊗ dxµp is a p-form, and η = ηµp+1···µp+q
dxµp+1 ⊗ · · · ⊗

dxµp+q is a q-form. Then the wedge product is a (p+ q)-form, defined as

ω ∧ η = (p+ q)!
p!q! ω[µ1···µp

ηµp+1···µp+q ]dxµ1 ⊗ · · · ⊗ dxµp+q

= (p+ q)!
p!q! ωµ1···µp

ηµp+1···µp+q
dx[µ1 ⊗ · · · ⊗ dxµp+q ] , (2.115)

where

T[µ1µ2···µn] = 1
n! (Tµ1µ2···µn + alternating sum over permutations of indices) .

(2.116)

So, for example, for two one-forms A and B,

(A ∧B)µν = 2A[µBν] = AµBν −AνBµ . (2.117)

From the definition of the wedge product, we can see that it inherits the
distributivity, associativity, and commutativity with R from the tensor product;
just to be very clear, this means that for any three forms A, B and C, and real
number λ,

A ∧ (B + C) = A ∧B +A ∧ C ,

(A ∧B) ∧ C = A ∧ (B ∧ C) = A ∧B ∧ C ,

A ∧ λB = λA ∧B = λ(A ∧B) . (2.118)

In addition, from the definition, we can also show that for a p-form ω and a
q-form η,

ω ∧ η = (−1)pqη ∧ ω , (2.119)

so one has to be extra careful in switching the order of forms in a wedge product!
The set of all wedge products of one-forms from T ∗

p forms a vector space,
T ∗

p ∧ T ∗
p . You can of course perform arbitrarily many wedge products to form

higher-order forms in spaces that we denote as
∧k(T ∗

p ), which is a vector space
of k-forms.
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As before, once a coordinate system is chosen on the tangent space, this
induces a basis on

∧k(T ∗
p ), denoted by dxµ1 ∧· · ·∧dxµk . Two-forms are objects

that act on a pair of vectors, and return a number. From the definition of the
wedge product that the action of the basis two-forms is

dxµ ∧ dxν(∂α, ∂β) = δµ
αδ

ν
β − δν

αδ
µ
β . (2.120)

The analogous expression for a p-term would have p! terms, corresponding to all
the different permutations with the appropriate sign depending on the number
of swaps to get to the permutation at hand.

As an example, on a 3-dimensional manifold with some choice of coordinate
basis, a one-form looks like

A = Aµdxµ = A1dx1 +A2dx2 +A3dx3 , (2.121)

a two-form has the form

F = 1
2Fµνdxµ ∧ dxν = F12dx1 ∧ dx2 + F23dx2 ∧ dx3 + F31dx3 ∧ dx1 ,

(2.122)

where dxµ ∧ dxν = −dxν ∧ dxµ. A three-form looks like

Ω = 1
3!Ωµνσdxµ ∧ dxν ∧ dxσ = Ω123dx1 ∧ dx2 ∧ dx3 . (2.123)

All of the components have to be completely antisymmetric. Once again, it is
unfortunately extremely common for people to simply drop the wedge product,
writing Fµνdxµ ∧ dxν as Fµνdxµdxν , leaving the reader to remember that in
fact F is a two-form.

In d-dimensions, the space of p-forms is d!/[p!(d− p)!] dimensional, and all
p-forms with p > d vanish identically; the basis of the p-form would involve the
wedge product of two basis one-forms with the same index, which is necessarily
zero by the antisymmetrization of the indices in the definition of the wedge
product.

2.7.3 The exterior derivative

The wonderful world of forms and the antisymmetry of swapping the order of
the wedge product of two one-forms essentially gives us a nice safe space for
us to define yet another useful derivative-like operator. This is known as the
exterior derivative, which takes a p-form ω = ωµ1···µp

dxµ1 ∧ · · · ∧ dxµp in the
coordinate basis, and produces a (p+ 1)-form dω, given by

dω = (p+ 1)∂[µ1ωµ2···µp+1]dxµ1 ⊗ · · · ⊗ dxµp+1

= (p+ 1)∂µ1ωµ2···µp+1dx[µ1 ⊗ · · · ⊗ dxµp+1]

= p+ 1
(p+ 1)!p!∂µ1ωµ2···µp+1dxµ1 ∧ · · · ∧ dxµp+1

= ∂µ1ωµ2···µp+1dxµ1 ∧ · · · ∧ dxµp+1 . (2.124)

where in the second last step, I used the definition of the wedge product to
rewrite tensor products into wedge products. The last line is typically the form
that is most useful.

Let’s warm up by doing some examples. Taking the exterior derivative of a
zero-form, which is just a scalar field f on the manifold, gives

df = ∂µf dxµ , (2.125)

40



which once again is the gradient. Comparing this with the Lie derivative, you
might start to see a pattern here: all derivatives acting on scalar fields on the
manifold must return the same thing.

For a one-form A, define F = dA; we find

F = dA = 2∂[µAν]dxµ ⊗ dxν = ∂µAν dxµ ∧ dxν = 1
2Fµν dxµ ∧ dxν ,

(2.126)

where Fµν = ∂µAν − ∂νAµ; you should at this point be noticing a striking
resemblance to the electromagnetic field tensor! Let’s write this out explicitly
in component form, assuming we’re on a manifold in 3D:

F = dA =
(
∂A2

∂x1 − ∂A1

∂x2

)
dx1 ∧ dx2 +

(
∂A3

∂x2 − ∂A2

∂x3

)
dx2 ∧ dx3

+
(
∂A1

∂x3 − ∂A3

∂x1

)
dx3 ∧ dx1 (2.127)

What you should notice here is that the exterior of the one-form A gives some-
thing that resembles the curl, ∇× on R3!

Finally, suppose we have a two-form G = G12dx1 ∧ dx2 +G23dx2 ∧ dx3 +
G31dx3 ∧ dx1. Then

dG =
(
∂G23

∂x1 + ∂G31

∂x2 + ∂G12

∂x3

)
dx1 ∧ dx2 ∧ dx3 , (2.128)

which resembles the divergence, ∇· in R3.
How is the exterior derivative a derivative? Remember that a derivative-like

operator should do two things: 1) it should be linear, i.e. d(aω + bη) = a dω +
bdη, which clearly holds given that the partial derivative itself is linear, and
2) that the operator should obey Leibniz’s rule. In fact, that exterior derivative
obeys a slightly modified version of Leibniz’s rule: given a p-form ω and a q-form
η,

d(ω ∧ η) = (dω) ∧ η + (−1)pω ∧ (dη) , (2.129)

the proof of which I will not show here, but can be straightforwardly derived
from all the definitions above.

Let’s now consider what happens when you take the exterior derivative twice.
We can observe from the definition that

d2A = ∂k∂lAµ1···µp
dxk ∧ dxl ∧ dxµ1 ∧ · · · ∧ dxµk . (2.130)

However, we should be able to commute the two partial derivatives, while k and
l are supposed to be antisymmetric indices in the wedge product, implying that
the expression is zero. This therefore implies the following extremely important
result:

d2 = 0 , (2.131)

sometimes known as Poincaré’s lemma. We say that a p-form A is closed
if dA = 0, and exact if A = dB for some (p − 1)-form B. All exact forms
are closed, but whether or not all closed forms are also exact depends on the
topology of the manifold you are in; all closed p-forms where p ≥ 1 are exact in
Minkowski or real space.

What are we to make of all of this? By studying forms and the exterior
derivative, we have developed machinery that is the generalization of ∇ to
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27 Unfortunately, the choice of the mostly
minus metric and sign conventions used
in the literature have culminated in this
horrendous minus sign, which I wouldn’t
personally introduce here, but will to be
consistent with e.g. Ref. [5].

arbitrary dimensions and manifolds with arbitrary coordinate basis. In fact,
Poincaré’s lemma itself tells us that if I take the curl of the grad, or the div
of a curl, I get zero! The exterior derivative and the wedge product are the
much-hoped-for generalization of vector calculus to manifolds, and are extremely
powerful tools indeed.

(End of Lecture: Wednesday Oct 9 2024)

2.7.4 Electromagnetism

As we already alluded to earlier, the language of differential forms is particularly
suited to describing electromagnetism, especially given that Maxwell’s equations
are basically a bunch of relations involving divs and curls! The manifold that is
relevant here is Minkowski space; we’ll take the metric to be (+1,−1,−1,−1),
and we’ll work everything out in natural units, where c = ε0 = µ0 = 1.

The basic object of interest is the four-potential, Aµ = (ϕ, A⃗), where ϕ is
the electric potential, and A⃗ is the vector potential. The one-form that we are
interested in is therefore A = Aµ dxµ, where Aµ = (ϕ,−A⃗). As we saw earlier,
I can define the two-form27

F = −dA = −1
2Fµνdxµ ∧ dxν , (2.132)

where Fµν = ∂µAν − ∂νAµ. Using the standard relation that

E⃗ = −∇ϕ− ∂A⃗

∂t
, B⃗ = ∇ × A⃗ , (2.133)

we can see that in fact the components of F are precisely the electromagnetic
fields, e.g.

F01 = ∂0A1 − ∂1A0 = −∂tA⃗x − ∂xϕ = E⃗x

F12 = ∂1A2 − ∂2A1 = −(∂xA⃗y − ∂yA⃗x) = −B⃗z (2.134)

with

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (2.135)

Since F is exact, we arrive immediately at our first equation of motion:

dF = 0 , (2.136)

with almost no effort. You’ll prove in the next problem set that this is equivalent
to ∇ × E⃗ = −∂tB⃗ and ∇ · B⃗ = 0, which are the two source-free Maxwell
equations.

The other two equations take a little more work to write down in form lan-
guage. We first have to define the Hodge star operator on a manifold of
dimension n, which maps p-forms to (n − p)-forms via the following transfor-
mation of the coordinate basis:

⋆dxµ1 ∧ · · · ∧ dxµn−p = 1
p!ε

µ1···µn−p
ν1···νpdxν1 ∧ · · · ∧ dxνp . (2.137)
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28 This is true in the mostly minus metric
convention we are using. In the mostly
plus convention, you add a minus sign for
every dt in ω. For Rn, there is no need
to worry about extra minus signs.

29 When speaking generally, area will also
be regarded as a volume

where εµ1···µn−pν1···νp
=
√

|g|ϵµ1···µn−pν1···νp is the Levi-Civita tensor. This
looks scary, but in an orthonormal Cartesian or Minkowski basis, this is quite
straightforward. For 2-forms on Minkowski space, it is simply the map

⋆(dx ∧ dy) = dt ∧ dz
⋆(dy ∧ dz) = dt ∧ dx
⋆(dx ∧ dz) = −dt ∧ dy
⋆(dt ∧ dx) = −dy ∧ dz
⋆(dt ∧ dy) = dx ∧ dz
⋆(dt ∧ dz) = −dx ∧ dy

The rule of thumb is that for a given form ω, ⋆ω can be obtained by writing the
components not involved in ω in an order such that ω∧(⋆ω) = dt∧dx∧dy∧dz,
and adding an extra minus sign for every spatial basis component in ω.28 The
two Maxwell’s equations with sources, ∇ · E⃗ = ρ and ∇ × B⃗ = j⃗ + ∂tE⃗, can
ultimately be written as

d(⋆F ) = ⋆J , (2.138)

where J = Jµdxµ is the one-form corresponding to the four-current, Jµ =
(ρ,−j⃗), with ρ being the charge density, and j⃗ being the current density.

On your problem set, you will also see that charge conservation and gauge
transformations fall out quite naturally from using the language of differential
forms.

2.8 Integration on Manifolds

Having seen all the added work we needed to do to define operations that look
like derivatives on a manifold, you might be worried that integration might be
similarly cumbersome. It turns out, however, that integration on manifolds is
a much more familiar beast: once we inroduce some formalities, you’ll realize
soon enough that you’ve always been comfortable integrating on manifolds!

2.8.1 Volume forms

Integrating a function over a manifold involves breaking up the manifold into
little pieces, each with a volume29 and a function value, and adding up all of the
contributions from the pieces. To do this, we will have to start by understanding
how to define volume locally. We begin by trying to understand how to define
the volume of k vectors in a tangent space. For two vectors v⃗1, v⃗2 in 3D space,
for example, we know that we can define a volume by taking the area of the
parallelogram spanned by these vectors, i.e. |v⃗1 × v⃗2|. Similarly, in 3D space,
we can take three vectors and form them into a parallelopiped, More generally,
the volume ωk is therefore something that takes k vectors and returns a real
number, and so ωk is a (0, k)-object that lives in

⊗k
T ∗

p . In addition, we would
like the following properties for the volume form:

1. Scaling : If we double the length of one of the vectors, we expect the
volume to double, i.e. given k vectors v⃗1, · · · , v⃗k ∈ Tp, and λ ∈ R,

ωk(λv⃗1, v⃗2, · · · , v⃗k) = ωk(v⃗1, λv⃗2, · · · , v⃗k) = · · · = ωk(v⃗1, v⃗2, · · · , λv⃗k)
= λωk(v⃗1, v⃗2, · · · , v⃗k) . (2.139)

Note that this allows for negative values for the volume.
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2. Additivity : For an additional vector u⃗ ∈ Tp, we also want

ωk(v⃗1 + u⃗, v⃗2, · · · , v⃗k) = ωk(u⃗, v⃗2, · · · , v⃗k) + ωk(v⃗1, v⃗2, · · · , v⃗k) ,
(2.140)

and similarly for all the other slots.

3. Degeneracy : If two sides coincide, the volume should be zero, i.e. if any
two vectors are equal, the form must be zero.

These properties combine to ensure that in fact, ωk has to be a k-form. To see
this, observe that

ωk(· · · , u⃗+ v⃗, · · · , u⃗+ v⃗, · · · ) = 0
=⇒ ωk(· · · , u⃗, · · · , v⃗, · · · ) + ωk(· · · , v⃗, · · · , u⃗, · · · ) = 0
=⇒ ωk(· · · , u⃗, · · · , v⃗, · · · ) = −ωk(· · · , v⃗, · · · , u⃗, · · · ) , (2.141)

i.e. ωk is completely antisymmetric with respect any pair of its arguments, which
is exactly what a k-form is.

2.8.2 Defining an integral

So we’ve got a notion of volume in the tangent space of every point on the
manifold, and we now want to be able to add these volumes up, just like how an
integral should work. The natural setting we have in mind is to have a p-form
defined in Rn, e.g.

ω = 1
p!ωµ1···µp

dxµ1 ∧ · · · ∧ dxµp , (2.142)

where xµ is a choice of coordinate system for Rn (e.g. Cartesian coordinate sys-
tem) and to integrate that form over some p-dimensional manifold Ω embedded
in Rn, to obtain a real number. Suppose Ω is parametrized by ξi, where

x1 = x1(ξ1, · · · , ξp) , · · · xd = xd(ξ1, · · · , ξp) . (2.143)

so that

dxµ = ∂xµ

∂ξi
dξi (2.144)

Then we can write, in this new parametrization,

ω = ωµ1µ2···µp

∂xµ1

∂ξ1 · · · ∂x
µp

∂ξp
dξ1 ∧ · · · ∧ dξp , (2.145)

which is a p-form on Ω.
We now define the integral of ω over the manifold Ω as

I =
∫

Ω
ω ≡

∫
Ω
dξ1 · · · dξp ωµ1µ2···µp

∂xµ1

∂ξ1 · · · ∂x
µp

∂ξp
, (2.146)

where I ∈ R, and the object on the right is just the regular multidimensional
integral. Note that if ξi = xi, i.e. the parametrization of Ω is the same or
some subset of Rn, then this is just a straightforward integral over the compo-
nent of the form; otherwise, because ωµ1µ2···µp

is antisymmetric in all indices,
the contraction against xµ is really the Jacobian that we’re used to in regular
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integration. The punchline really is that you can simply treat forms as regular
differentials, remembering that a change of coordinates requires a Jacobian.

A few examples will help. Let’s consider a 1-dimensional path Γ starting
at some point P0 and ending at point P1, and a function f defined across the
path. We can integrate the 1-form df , if we parametrize the path as x(s), for
0 ≤ s ≤ 1, so that x(0) = P0 and x(1) = P1, we have

I =
∫

Γ
df =

∫ 1

0
ds
df

ds
= f(P1) − f(P0) . (2.147)

Next, let’s integrate the 2-form ω = xdy ∧ dz over the surface of a two-
dimensional sphere S2 of radius R. We can parametrize the sphere using polar
angles, which are related to the usual R3 Cartesian coordinates via

x = R cosϕ sin θ
y = R sinϕ sin θ
z = R cos θ . (2.148)

To perform the integral, we need the Jacobian J ≡ |∂xi/∂ξj |. We have

∂y

∂θ
= R sinϕ cos θ , ∂y

∂ϕ
= R cosϕ sin θ

∂z

∂θ
= −R sin θ , ∂z

∂ϕ
= 0 . (2.149)

Using the standard orientation with ξi = θ and ξ2 = ϕ so that θ̂ × ϕ̂ points
outward, J = R2 cosϕ sin2 θ. Hence,∫

S2
xdy ∧ dz =

∫ 2π

0
dϕ

∫ π

0
dθ(R cosϕ sin θ)(R2 cosϕ sin2 θ)

= 4
3πR

3 . (2.150)

We could also have noted that We also have the relation

dy = R sinϕ cos θ dθ +R cosϕ sin θ dϕ
dz = −R sin θ dθ , (2.151)

so that the form on the sphere is

xdy ∧ dz = (R cosϕ sin θ)(R2 cosϕ sin2 θ) dθ ∧ dϕ , (2.152)

and then proceeding directly with the integral. This picture is perhaps much
more intuitive though: you can think of the sphere as being tiled by little patches
formed by intersecting longitudinal and latitudinal lines, each bordered by a
vector v⃗θ in the θ̂ direction and v⃗ϕ in the ϕ̂ direction. The integral is then just
summing up ω(v⃗θ, v⃗ϕ) in all of the little squares (taking the limit as the squares
become infinitesimally small).

(End of Lecture: Tuesday Oct 15 2024)

2.8.3 Orientability

You might have noticed that we had to make a choice about the orientation of
the 2-sphere, i.e. pick an ordering to the basis elements dθ ∧ dϕ (as opposed to
dϕ∧dθ), so that the direction of θ̂×ϕ̂ always points outward. This is possible on
the sphere, making the sphere an orientable manifold. I won’t go into a detailed
discussion of the technical definition of orientable, but the picture you should
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have in mind is that the basis vectors are changing as you move from point to
point, but the transformation mapping basis vectors from one point to another
must always have a positive determinant for an orientable manifold. One simple
example of this failing is the Möbius strip, where you can see that one of the
two basis vectors transported in a loop ends up in the opposite orientation when
it comes back to itself. Integration as defined here really only makes sense on
orientable manifolds.

2.8.4 The volume form

Note that so far, in discussing the integration of forms, we have made no mention
whatsoever of the metric, and hence we do not need any notion of length to
make sense of these integrals. However, when a manifold of dimension p < d is
embedded in Rd, it inherits a metric from the usual metric of Rd.

For a manifold Ω, given any two vectors v⃗, w⃗ ∈ Ω; if the manifold is embed-
ded in Rd, then we can also view these vectors as belonging to Rd. The induced
metric gµν on Ω, on which we make a choice of coordinates ξµ on the manifold,
is simply the metric that, when acting on v⃗ and w⃗, gives the same result as the
usual metric δαβ on Rd with coordinates xα, i.e.

gµνv
′µw′ν = δαβv

αwβ , (2.153)

where vα and wβ are the components of v and w in the usual Cartesian coor-
dinate basis respectively, while v′µ and v′ν are the components in coordinates
parametrizing the manifold, ξµ. These are of course related to vµ and wν

through the usual change-of-coordinates formula, i.e.

gµνv
′µw′ν = δαβ

∂xα

∂ξµ

∂xβ

∂ξν
v′µw′ν , (2.154)

i.e. the induced metric on the manifold is

gµν = δαβ
∂xα

∂ξµ

∂xβ

∂ξν
=

d∑
i=1

∂xi

∂ξµ

∂xi

∂ξν
. (2.155)

For a p-dimensional manifold Ω, we can define the volume form associated
with this induced metric,

dω = √
g dξ1 ∧ · · · ∧ dξp , (2.156)

where you can see that √
g is the Jacobian between ξµ and xα, the Cartesian

coordinates on Rd. Thus, integrating this form over the Ω gives the total p-
dimensional volume of Ω.

Let’s look at a simple example, the unit-radius two-sphere embedded in R3.
Choosing polar angle coordinates on the sphere, we have

x = cosϕ sin θ ,
y = sinϕ sin θ ,
z = cos θ , (2.157)

from which we see that the induced metric has components

gϕϕ = (− sinϕ sin θ)2 + (cosϕ sin θ)2 = sin2 θ ,

gϕθ = (− sinϕ sin θ)(cosϕ cos θ) + (cosϕ sin θ)(sinϕ cos θ) = 0 ,
gθθ = (cosϕ cos θ)2 + (sinϕ cos θ)2 + (− sin θ)2 = 1 , (2.158)
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i.e. the induced metric is

g = dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ . (2.159)

The volume form is then
√
g dθ ∧ dϕ = sin θ dθ ∧ dϕ , (2.160)

which corresponds to the usual surface element on the two-sphere.

2.8.5 Stokes’ Theorem

We finish our discussion of integration—and the calculus of manifolds!—with
Stokes’ theorem. You should be familiar with this result from 3D vector calculus:
given a surface S in R3, with boundary Γ, for a smooth vector field F⃗ throughout
R3 we have the relation ∫

S

dS⃗ · (∇ × F⃗ ) =
∮

Γ
dΓ⃗ · F⃗ . (2.161)

This allows us to move between differential and integral forms of Maxwell’s
equations, for example

∇ × E⃗ = −∂B⃗

∂t
=⇒

∫
S

dA⃗ · (∇ × E⃗) = − ∂

∂t

∫
S

dA⃗ · B⃗ =
∮

Γ
dℓ⃗ · E⃗ .

(2.162)

The generalized version of Stokes’ theorem relates the integral of a exte-
rior derivative dω of a form ω across a manifold Ω with an integral along the
boundary ∂Ω of Ω:

∫
Ω

dω =
∫

∂Ω
ω . (2.163)

This is an incredibly beautiful and useful result. We won’t go through the formal
proof, but the intuitive explanation for this is pretty straightforward. Notice that
for a p-form,

d(ωµ1···µp dxµ1 ∧ · · · ∧ dxµp) = ∂νωµ1···µp dxν ∧ dxµ1 ∧ · · · ∧ dxµp . (2.164)

Divide ω up into tiny little boxes, and perform the integral in each of these
boxes. This gives you a bunch of terms that look like the sum of ω evaluated on
one side of a p-dimensional box. However, the adjacent box shares one surface
with the current box, with the opposite orientation, and therefore when we sum
the effect of these two boxes together, the term corresponding to the shared
surface cancels out. Therefore, when we sum over all of the small boxes, we are
left with ω summed along the boundary of Ω.

Let’s see a few simple examples:

1. If Ω is a region in R2, then since

d
[

1
2(x dy − y dx)

]
= dx ∧ dy , (2.165)

we can write

Area(Ω) =
∫

Ω
dx ∧ dy = 1

2

∫
∂Ω

(xdy − y dx) , (2.166)

which is just Green’s theorem.
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2. For Ω a region in R2, we have

d
[

1
2r

2 dθ
]

= r dr ∧ dθ , (2.167)

and so

Area(Ω) =
∫

Ω
r dr ∧ dθ = 1

2

∫
∂Ω
r2 dθ , (2.168)

which are two equivalent ways of evaluating the area in polar coordinates.

3. If Ω is the interior of a sphere of radius R, then∫
Ω

dx ∧ dy ∧ dz =
∫

∂Ω
xdy ∧ dz = 4

3πR
3 , (2.169)

a result which we obtained in Eq. (2.150).
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3 Complex Analysis
References: Churchill and Brown (CB) Chapters 1–7

From doing calculus on general spaces but with a focus on real numbers, we’ll
now turn our attention to doing calculus with functions of complex numbers.
From our experience with real analysis, one may have expected the calculus of
complex numbers to be as complicated, varied and sometimes pathological as
the calculus of real numbers; but we’ll see that the structure of the complex
plane makes life very simple and pretty, making complex analysis a very powerful
tool, even when you’re really only interested in the real line.

3.1 Preliminaries

We’ll begin with a crash course on complex numbers and how to manipulate
them, which should be familiar to you from your undergraduate experience.
Complex numbers can be obtained by supplementing the real numbers with an
additional element i, satisfying i2 = −1. It turns out that with this new element,
we can still sensibly define addition, subtraction, multiplication and division; they
all work in a manner very similar to what happens in R and also for the rational
numbers Q. The mathematical jargon here is that the complex numbers form
a field, with R as a subfield. With this new element, the bigger field C actually
behaves even more nicely than R; for example, every polynomial of degree n
with complex coefficients always has n complex roots, while it certainly isn’t
the case polynomials with real coefficients of degree n have n real roots. A
straightforward example is x2 + 1, which has no real roots, but two complex
roots i and −i.

A general complex number z can be written as z = x+ iy, where x, y ∈ R.
We call x and y the real and imaginary part of z respectively, often written as
x = Re(z) and y = Im(z).

In addition to the usual field operations, we have two other important oper-
ations acting on a general complex number z = x+ iy ∈ C:

1. Complex conjugate, written either as z∗ or z, defined as z∗ = x − iy,
and

2. Modulus or absolute value, written as |z|, and defined as |z| =
√
x2 + y2.

One useful result is that |z|2 = zz∗, which is often used to divide complex
numbers; for example,

3 + 4i
3 − 4i = (3 − 4i)2

(3 − 4i)(3 + 4i) = 9 − 24i− 16
25 = −7 − 24i

25 . (3.1)

Aside from writing z = x+ iy, it is also common to write complex numbers
in polar form,

z = r(cos θ + i sin θ) , (3.2)

where x = r cos θ and y = r sin θ, and r, θ ∈ R. In fact, it is often helpful
to visualize the complex plane, with the real component on the x-axis and the
imaginary component on the y-axis, so that complex numbers z = x + iy can
be visualized as points (x, y), or in polar coordinates in terms of (r, θ).

You can check that r = |z|. We call the value of θ the argument of the
complex number, written as θ = arg(z). You can see, however, that given θ
as the argument of z, θ + 2nπ for any integer n gives you the same complex
number as well. We therefore define the principal value of the argument
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Arg(z), which is the unique value of θ such that −π < θ ≤ π. Note that
Arg(−1) = π.

Euler’s formula, which we will study in more detail later, is given by

eiθ = cos θ + i sin θ , (3.3)

and so we can also write z = r(cos θ + i sin θ) = reiθ, which we call the
exponential form. Switching between forms can help make algebra easier. In
particular, for z = x+ iy,

z∗ = x− iy = r(cos θ − i sin θ) = re−iθ . (3.4)

Euler’s formula also directly leads to de Moivre’s formula, which reads

(cos θ + i sin θ)n = cosnθ + i sinnθ , (3.5)

which you can check by writing (eiθ)n = einθ.
One particularly important operation is to find the nth roots of any complex

number z0 = r0e
iθ0 , which by definition are complex numbers z = reiθ such

that zn = z0. This means that we require rn = r0, and nθ = θ0 + 2kπ for
some k ∈ Z, since adding an additional 2π to the argument doesn’t change the
complex number at all. We can see here that there are n unique values of θ,
namely

θ = θ0 + 2kπ
n

, k = 0, · · · , n− 1 . (3.6)

Therefore the nth roots of z0 are

z = r
1/n
0 exp

[
i

(
θ0

n
+ 2kπ

n

)]
, k = 0, · · · , n− 1 . (3.7)

(End of Lecture: Wednesday Oct 16 2024)

3.2 Complex Functions and Derivatives

We next move on to studying functions of one complex variable f(z), which in
general maps a complex number to another complex number on some subset
of C. In a rigorous study of complex analysis, we would make sure to define
things like continuity and taking limits rigorously, but as this is a physics class,
we will just rely on the intuitive definitions of continuity and limit; you can read
more about robust definitions in CB15–19. At this point, some functions that
you can easily define are things like polynomials, e.g. f(z) = z2, as well as
familiar functions like exponential and trigonometric functions, which all can be
generalized onto the complex plane (more on that later).

3.2.1 Complex derivative

We will however define the complex derivative carefully. Let f be a function
defined over some small neighborhood around a point z0. Then the derivative
of f and z0 is the limit
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f ′(z0) = lim
z→z0

f(z) − f(z0)
z − z0

, (3.8)

and the function f is said to be differentiable at z0 when f ′(z0) exists. This
definition should come as no surprise if you’re familiar with the derivative over
R. However, some thought should now convince you that this definition is
quite a bit stronger than that in R; the limit that you obtain has to be the
same regardless of which direction you approach z0 from, as otherwise the limit
cannot be defined.

Take for example the function f(z) = |z|2, which intuitively looks like a
nice function over R2; on the complex plane, we find that f(z) is in fact not
differentiable anywhere except at z = 0! You can see this by picking a point x0
on the real axis, and trying to find the limit when 1) you approach along the real
axis, where the result of the limit is 2x0, and 2) you approach along the purely
imaginary direction, where the result of the limit is 0. Complex differentiability
is a much more stringent requirement.

Assuming that the derivative does exist, all of our intuition from calculus on
R carries over. So, for example, we have:

1. The usual differentiation formula for a polynomial,

d

dz
zn = nzn−1 . (3.9)

2. Complex differentiation is additive, i.e.

d

dz
[f(z) + g(z)] = f ′(z) + g′(z) . (3.10)

3. We have the product rule, i.e.

d

dz
[f(z)g(z)] = f(z)g′(z) + f ′(z)g(z) . (3.11)

4. Finally, we have the chain rule: suppose that f has a derivative at z0, and
g has a derivative at the point f(z0). Then the function F (z) = g[f(z)]
has a derivative at z0, and

F ′(z0) = g′[f(z0)]f ′(z0) . (3.12)

Thus, everything we know and love about real analysis carries over neatly here!

3.2.2 Holomorphic functions and the Cauchy-Riemann equations

At this point, you might still be really uncomfortable with taking complex deriva-
tives, because you’ve got to be real careful about whether a given function is
differentiable or not. In this part, we’re going to develop some nice necessary
and sufficient conditions for a complex function to be differentiable. Let me just
remind you of what “necessary” and “sufficient” mean:

• The statement “A is necessary for B” means that A has to be true in
order for B to be true, or in other words, if B is true, A must also be
true. This is sometimes written as B =⇒ A. So, for example, “passing
your ACE exams is necessary for obtaining your PhD”; if you successfully
obtained your PhD, you must have passed your ACE exams, because it
was a necessary condition.
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• The statement “A is sufficient for B” means that if A is true, B is true as
well. This is sometimes written as A =⇒ B. So, for example, “getting
a 70 on this course is sufficient to pass”, and so if you do get a 70, that’s
sufficient for you to pass; but you might also have passed with a 60.

Let’s examine more closely how derivatives work on the complex plane, and
derive a necessary condition for a derivative to exist. Any complex function
f(z) can be written as a pair of component functions u and v, such that for
any z = x+ iy,

f(z) ≡ u(x, y) + iv(x, y) , (3.13)

where u, v take in a pair of real numbers, and return a real number. Suppose
the derivative f ′(z0) exists at the point z0 = x0 + iy0. Then

f ′(z0) = lim
z→z0

f(z) − f(z0)
z − z0

. (3.14)

This should apply as I approach z0 from any direction on the complex plane, so
let’s start by approaching z0 along a direction parallel to the real axis. We can
write (x, y) = (x0 + ∆x, y0), so that going along the real direction, we find

f ′(z0) = lim
∆x→0

u(x0 + ∆x, y0) − u(x0, y0) + iv(x0 + ∆x, y0) − iv(x0, y0)
x0 + ∆x− x0

= lim
∆x→0

u(x0 + ∆x, y0) − u(x0, y0)
∆x + lim

∆x→0
i
v(x0 + ∆x, y0) − v(x0, y0)

∆x
= ∂xu+ i∂xv , (3.15)

where I have just used the usual definition of the partial derivative of a function
of two real numbers. On the other hand, I can also approach z0 parallel to the
imaginary axis. In this case, we should write (x, y) = (x0, y0 + ∆y), so that
going along the imaginary direction, we find

f ′(z0) = lim
∆y→0

u(x0, y0 + ∆y) − u(x0, y0) + v(x0, y0 + ∆y) − v(x0, y0)
i(y0 + ∆y) − iy0

= lim
∆y→0

u(x0, y0 + ∆y) − u(x0, y0)
i∆y + lim

∆y→0
i
v(x0, y0 + ∆y) − v(x0, y0)

i∆y
= −i∂yu+ ∂yv (3.16)

Comparing the two expressions we just obtained, we find

∂xu = ∂yv , ∂yu = −∂xv , (3.17)

where all functions are to be evaluated at (x0, y0). These are known as the
Cauchy-Riemann equations. Once again, these are necessary conditions for
the existence of a derivative: if they are not satisfied, then the derivative does
not exist, but if they are satisfied, it does not imply that the derivative must
therefore exist. Furthermore, one can see that

f ′(z0) = ∂xu+ i∂xv , (3.18)

when u and v are evaluated at (x0, y0).
What about sufficient conditions? In addition to satisfying the Cauchy-

Riemann equations, for f ′(z0) to exist, 1) the first order partial derivatives must
exist everywhere in some neighborhood of z0, and 2) these partial derivatives
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30 This is not just us being sloppy as
physicists: since f is analytic, we must
have the partial derivatives of u and v
being continuous everywhere in D, which
implies mathematically that the partial
derivatives do indeed commute.

are continuous at (x0, y0). I won’t prove this statement, since it is not very
essential in physics, but you can read about it in CB22.

Let’s try a simple example. Consider the function f(z) = z∗. We can write
f(z) = u(x, y) + iv(x, y), where u(x, y) = x, and v(x, y) = −y. From this,
we see that ∂xu = 1, but ∂yv = −1, and therefore ∂xu ̸= ∂yv. We can thus
conclude that f(z) = z∗ is not differentiable anywhere.

Now for some terms that can thrown around a lot: a function f is called
holomorphic in some region of C if it has a complex derivative everywhere in the
region. Sometimes people use the word analytic instead; technically, analytic
means something else that we will discuss later on the course, but fortunately all
holomorphic functions are analytic and vice-versa in complex analysis, so to all
intents and purposes, they are synonyms for complex functions, and we won’t
worry about this distinction any further. A function that is holomorphic on C is
an entire function; for example, any polynomial is an entire function.

Frequently, a function f is not holomorphic at a point z0, but is holomor-
phic at points arbitrarily close to z0; for example, f(z) = 1/z is holomorphic
everywhere except at z = 0. Such points z0 are called singularities. Lots more
to come about singularities ahead.

3.2.3 Harmonic functions

A harmonic function H(x, y) is a real-valued function of two real variables x
and y which satisfies Laplace’s equation,

(∂2
x + ∂2

y)H = 0 . (3.19)

Laplace’s equation comes up frequently in physics; for example, the electrostatic
and gravitational potentials in vacuum must satisfy Laplace’s equation. Complex
analysis turns out to be very useful for solving Laplace’s equation, due to the
following relation:

If a function f(z) = u(x, y) + iv(x, y) is analytic in some domain D,
then u and v are harmonic in D.

Let’s see why this is true. Since f is analytic in D, the Cauchy-Riemann equa-
tions must be satisfied, i.e.

∂xu = ∂yv , ∂yu = −∂xv . (3.20)

Let’s take the x-derivative of the first equation, and the y-derivative of the
second equation. This gives

∂2
xu = ∂x∂yv , ∂2

yu = −∂y∂xv . (3.21)

However, we can commute the partial derivatives,30 from which we find

(∂2
x + ∂2

y)u = 0 , (3.22)

i.e. u is harmonic. By taking the y-derivative of the first Cauchy-Riemann
equation, and taking the x-derivative of the second one, we can also see that
(∂2

x + ∂2
y)v = 0, thus proving the relation above.

Suppose we have two functions u and v that are both solutions to Laplace’s
equation. We say that v is the harmonic conjugate of u if they also satisfy
the Cauchy-Riemann equations, i.e. ∂xu = ∂yv and ∂yu = −∂xv. Confusingly,
v being the harmonic conjugate of u doesn’t mean that u is the harmonic
conjugate of v, so be careful! This gives us powerful way of checking if a
function is analytic:
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A function f(z) = u(x, y)+iv(x, y) is analytic in a domain D if and only
if v is a harmonic conjugate of u, i.e. v being the harmonic conjugate of
u is a necessary and sufficient condition for f(z) to be analytic.

Let’s see why this is so. In one direction, this is easy: f being analytic implies
that u and v satisfy the Cauchy-Riemann equations, and are also harmonic. On
the other hand, u and v being harmonic conjugates implies that they satisfy
the Cauchy-Riemann equations, and also that u and v have well-defined partial
derivatives in D that are continuous everywhere. This therefore satisfies the
sufficient condition for f to be analytic that we discussed in Sec. 3.2.2.

What is the big-picture takeaway here? For a complex function f(z) =
u(x, y) + iv(x, y) to be analytic, the component functions u and v face very
strong constraints: they satisfy the Cauchy-Riemann equations, and are har-
monic. The result of this is that analytic complex functions are extremely well-
behaved, and that is going to lead to all kinds of very pretty results as we go
forward.

3.2.4 Elementary functions

Let’s take a look at some functions that you’re already familiar with from real
space, and see how they work on the complex plane. Most of the properties
of these functions that you’re used to in real space carries over to the complex
plane; I’ll only highlight things that work differently between R and C.

The exponential function ez for z = x+ iy is simply given by

ez = exeiy = ex(cos y + i sin y) . (3.23)

One important property of ez that we should note is that ez ̸= 0 for any z ∈ C,
since |ez| = ex > 0 for z = x+ iy. We say that ez has no zeros, where a zero
z0 of a function f(z) is defined as f(z0) = 0. In addition, unlike the exponential
function on the real line, ez is actually periodic, since

ez+2πi = eze2πi = ez . (3.24)

Furthermore, even though ez ̸= 0, we still can have ez < 0, e.g.

eiπ = cosπ + i sin π = −1 . (3.25)

Finally, ez is an entire function, with
d

dz
ez = ez (3.26)

everywhere on the complex plane. Otherwise, all of our intuition on real space
about the exponential carries over to C.

Next, we move on to the trigonometric functions. From Euler’s formula,
we have eiθ = cos θ + i sin θ, from which we can see that for a real number
θ, cos θ = (eiθ + e−iθ)/2, and sin θ = (eiθ − e−iθ)/(2i). We can therefore
generalize this and define the following complex trigonometric functions:

sin z ≡ eiz − e−iz

2i , cos z ≡ eiz + e−iz

2 . (3.27)

Once again, all of the usual properties in trigonometry and calculus generalize
to the complex plane, which you can check from the definition. One thing to
note from the definition of sin z and cos z is that for y ∈ R,

sin(iy) = i sinh y , cos(iy) = cosh y . (3.28)
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31 Note that we cannot include θ = α
here, as the function has a discontinuity
at that point; a little bit off the θ = α
line, we have complex numbers with argu-
ments close to α, while on the other side,
we have numbers with arguments close to
α+ 2π.

Re(z)

Im(z)

α

Figure 12: A branch cut on the complex plane for
log, restricting the values of θ to α < θ < α+2π.

From these definitions, we can go on to define

tan z ≡ sin z
cos z , cot z ≡ cos z

sin z ,

sec z ≡ 1
cos z , csc z ≡ 1

sin z . (3.29)

Similarly, we have the hyperbolic functions, defined as

sinh z = ez − e−z

2 , cosh z = ez + e−z

2 . (3.30)

Nothing really surprising happens in the generalization here.
We next turn our attention to the logarithmic function, which requires

more careful treatment. Let’s write a general complex number z in polar form,
i.e. z = reiθ. Then we define

log z ≡ ln r + i(θ + 2nπ) , n ∈ Z , (3.31)

where we use ln to denote the real-valued natural logarithm, to distinguish it
from the complex logarithm log. Note that log defined in this way is multivalued.
Importantly, since for any z = x+ iy, ez = exeiy, we have

log ez = x+ i(y + 2nπ) = z + 2inπ , n ∈ Z . (3.32)

With this definition, we can also define a complex exponent, with the
function zc for c ∈ C being defined as

zc ≡ ec log z . (3.33)

Note that this means that the complex exponent is a multi-valued function
as well in general, so for example

i−2i = e−2i log i = e−2i·i(π/2+2nπ) = e(4n+1)π , n ∈ Z . (3.34)

Therefore, i−2i is multivalued, and all of these values are actually real numbers!

3.2.5 Branches

Let’s consider the multi-valued logarithm function again, which for z = reiθ is
log z = ln r + iθ, where θ = Θ + 2nπ, with Θ being the principal value of the
argument. To make this single-valued, we can choose any real number α and
restrict the value of θ so that α < θ ≤ α+ 2π. In this restricted domain, log(z)
becomes single-valued, and in fact is analytic for r > 0, α < θ < α + 2π.31

Fig. 12 shows an illustration of what we’ve done, which is to define what’s known
as a branch of the log function, with the θ = α line on the complex plane being
called a branch cut. The origin in this case is known as the branch point. The
function can be defined on the branch cut; however, the domain over which the
function is continuous and even analytic must include it.
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The special case where we choose α = −π, so that the branch cut is along
the negative real axis, and −π < θ ≤ π corresponds to the principal value of
the argument, defines the principal value of the logarithm,

Log(z) = ln r + iΘ , (3.35)

written with a capital ‘L’; it is single-valued, and well-defined whenever
z ̸= 0. This is also known as the principal branch. Thus for example

log(−1) = i(π + 2nπ) = (2n+ 1)πi , n ∈ Z ,
Log(−1) = iπ . (3.36)

Note that while the usual rules of how logarithms work carry over for log,
many of these rules don’t work for Log. For example, if z1 = z2 = −1, then

Log(z1z2) = 0 , (3.37)

but

Log(z1) + Log(z2) = iπ + iπ = 2πi , (3.38)

i.e. Log(z1z2) ̸= Log(z1) + Log(z2).

(End of Lecture: Monday Oct 21 2024)

3.3 Integration Part I

For the rest of the course, the main focus will be on integration on the com-
plex plane, which is a fascinating and beautiful area of mathematics, and also
extremely powerful, mostly due to the restricted structure of differentiable func-
tions on the complex plane.

Let’s begin with integration along the real line.

3.3.1 Integration along the real line

Suppose we have some function w(t) which is a complex valued function, but
takes as an argument a real variable t; you can imagine that this is just a
general complex function restricted to the real axis. Then we can write w(t) =
u(t) + iv(t) for two real-valued functions u and v. The definite integral of w(t)
can then be straightforwardly defined as∫ b

a

dtw(t) =
∫ b

a

dt u(t) + i

∫ b

a

dt v(t) , (3.39)

with the integral behaving in the usual ways that an integral would behave, e.g.∫ b

a

dtw(t) =
∫ c

a

dtw(t) +
∫ b

c

dtw(t) . (3.40)

You also get the fundamental theorem of calculus here, which says that∫ b

a

dtw(t) = W (b) −W (a) , W ′(t) = w(t) . (3.41)

So, for example, we have∫ π/2

0
dt eit = −i eit

∣∣π/2
0 = 1 − (−i) = 1 + i . (3.42)
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Im(z)
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−2i

Figure 13: The contour corresponding to z =
2eiθ.

3.3.2 Contour integrals

We’re looking at functions living on the complex plane though, so we should
really be able to define integrals on the complex plane. We can generalize
integrating along the real axis to an integral over any contour C in the complex
plane, written as the contour integral∫

C

dz f(z) . (3.43)

How would we go about defining this integral? Well, this is really the same as
how you would do a line integral on a flat surface, which you already have some
experience with. We try to find a parametrization of the complex numbers z(t)
along C, so that as t varies in some range a ≤ t ≤ b, z(t) takes us along the
contour. Then, following the usual change of variables formula,∫

C

dz f(z) =
∫ b

a

dt
dz

dt
f [z(t)] , (3.44)

converting the contour integral to just an integral along one real variable, which
we now know how to do. Note that the contour is oriented, i.e. there is a
direction associated with it. If you choose to perform the integral along the
contour −C, i.e. C in the opposite sense (starting at z(b) and heading to z(a)
in the previous parametrization), then you can see quite easily that∫

−C

dz f(z) = −
∫

C

dz f(z) . (3.45)

You are also free to split a contour up into parts, and sum the separate contri-
butions. This is all very similar to line integrals or even integrals on the real line
so far. Now let’s try a few examples!

1. Let’s evaluate the integral

I =
∫

C

dz z∗ . (3.46)

where C is the contour

z = 2eiθ , −π

2 ≤ θ ≤ π

2 , (3.47)

shown in Fig. 13. Along the contour, we have z∗ = 2e−iθ. We can
transform the integral over the contour to just an integral over θ, which
is a real variable, and so∫

C

dz z∗ =
∫ π/2

−π/2
dθ z∗(θ)dz

dθ

=
∫ π/2

−π/2
dθ (2e−iθ) · 2ieiθ

= 4i
(π

2 + π

2

)
= 4πi . (3.48)

2. Consider an arbitrary smooth contour C, which can be parametrized as
z = z(t), where a ≤ t ≤ b, from a fixed point z1 = z(t = a) to a fixed
point z2 = z(t = b). Now let’s consider the integral

I =
∫

C

dz z (3.49)
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Re(z)

Im(z)
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Figure 14: Contour z = 3eiθ for the integral over√
z, choosing the branch where 0 < arg(z) < 2π.

for this arbitrary contour. I can always write∫
C

dz z =
∫ b

a

dt z(t)z′(t)

= 1
2

∫ b

a

dt
d

dt
(z2(t))

= 1
2z

2(b) − 1
2z

2(a)

= 1
2
(
z2

2 − z2
1
)
. (3.50)

Notice that this integral is independent of the actual contour, and only
depends on the endpoints; and is very reminiscent of line integrals of
conservative forces. In particular, if you perform the integral over a closed
contour, then the result is simply zero.

3. Consider the semicircular path

z = 3eiθ , 0 ≤ θ ≤ π (3.51)

from the point z = 3 to z = −3. Along this path, we want to integrate
the following branch of z1/2, defined as

f(z) = z1/2 = exp
(

1
2 log z

)
, 0 ≤ arg(z) < 2π . (3.52)

This corresponds to a branch cut taken along the positive real axis; the
contour together with this branch cut is shown in Fig. 14. There’s no
issue with the integral starting on the branch cut. First, we note that

f(3eiθ) = exp
(

1
2 log(3eiθ)

)
= exp

[
1
2(ln 3 + iθ)

]
=

√
3eiθ/2 . (3.53)

Therefore, the integral we want to compute is∫
C

dz z1/2 =
∫ π

0
dθ

√
3eiθ/2 · 3ieiθ

= 3
√

3i
∫ π

0
dθ ei3θ/2

= 3
√

3i · e
i3θ/2

3i/2

∣∣∣∣π
0

= 2
√

3
(
ei3π/2 − 1

)
= −2

√
3(1 + i) . (3.54)

(End of Material for Midterm 2)

3.3.3 The modulus inequality

At this point, it seems like we know how to evaluate contour integrals, so we
should just go out and do a bunch of them, right? Well, it gets even better than
that: analytic functions on the complex plane are so well-behaved that there are
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some surprisingly powerful theorems ahead of us. For now though, we’ll take
a little detour and prove some important results related to integrals that will
come up repeatedly.

The first result relates the modulus of an integral to the integral of a modulus,
and will be particularly useful when we solve improper integrals on the real line
later on. In particular,

If w(t) is a complex-valued function defined on an interval a ≤ t ≤ b,
then ∣∣∣∣∣

∫ b

a

dtw(t)

∣∣∣∣∣ ≤
∫ b

a

dt |w(t)| . (3.55)

The proof is rather straightforward, so we’ll go through it: let the result of the
integral of w(t) over the interval be∫ b

a

dtw(t) = r0e
iθ0 , (3.56)

where the integral results in some arbitrary complex number determined by r0
and θ0. With this definition, ∣∣∣∣∣

∫ b

a

dtw(t)

∣∣∣∣∣ = r0 . (3.57)

On the other hand, we also have

r0 =
∫ b

a

dt e−iθ0w(t) (3.58)

Since r0 is just a real number, however, we can write the following:

r0 = Re
∫ b

a

dt e−iθ0w(t) =
∫ b

a

dtRe[e−iθ0w(t)] . (3.59)

But we also know that

Re[e−iθ0w(t)] ≤
∣∣e−iθ0w(t)

∣∣ =
∣∣e−iθ0

∣∣ |w(t)| = |w(t)| . (3.60)

Putting everything together proves the statement above.
This leads immediately to another important result:

Let C denote a contour of length L, and suppose that a function f(z) is
piecewise continuous on C. Then there exists M a nonnegative constant
such that

|f(z)| ≤ M (3.61)

for all points z on C, and therefore by the previous result,∣∣∣∣∫
C

dz f(z)
∣∣∣∣ ≤ ML . (3.62)

This is a really powerful result for taking contours to infinity. Here is an example:
consider the semicircular path C given by z = Reiθ, 0 ≤ θ ≤ π, and z1/2 denotes
the branch

z1/2 =
√
reiθ/2 , r > 0 , −π

2 < θ <
3π
2 . (3.63)
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32 Whenever the integral only depends on
the endpoints and not on the particular
contour, we sometimes will write the in-
tegral as having complex numbers as the
upper and lower limits.

Here, the branch cut is placed along the negative imaginary axis. Let’s consider
the integral

lim
R→∞

∫
C

dz
z1/2

z2 + 1 . (3.64)

First, we note that ∣∣∣∣ z1/2

z2 + 1

∣∣∣∣ = |z1/2|
|z2 + 1|

=
√
R

|R2ei2θ + 1|
(3.65)

But

|R2ei2θ + 1| =
√

(1 +R2 cos 2θ)2 + (R2 sin 2θ)2

=
√

1 + 2R2 cos 2θ +R4

≥ R2 − 1 , (3.66)

where we’ve taken R > 1 since we are going to take R → ∞. This means that∣∣∣∣ z1/2

z2 + 1

∣∣∣∣ ≤
√
R

R2 − 1 , (3.67)

and that therefore ∣∣∣∣∫
C

dz
z1/2

z2 + 1

∣∣∣∣ ≤ πR ·
√
R

R2 − 1 (3.68)

This shows that

lim
R→∞

∣∣∣∣∫
C

dz
z1/2

z2 + 1

∣∣∣∣ = 0 , (3.69)

and therefore the integral itself also becomes zero in the limit.

3.3.4 Antiderivatives

Thinking back to the example of integrating a function over an arbitrary contour
in Sec. 3.3.2, we should already be able to see that something like the funda-
mental theorem of calculus in real analysis should carry over into the complex
plane. Here is the theorem:32

Suppose that a function f(z) is continuous on a domain D. Then the
following statements are all equivalent:

1. f(z) has an antiderivative F (z) throughout D, i.e. F ′(z) = f(z);

2. The integrals of f(z) along contours lying entirely in D and ex-
tending from any fixed point z1 to any fixed point z2 all have the
same value, namely∫ z2

z1

dz f(z) = F (z2) − F (z1) , (3.70)

where F ′(z) = f(z);

3. The integrals of f(z) around closed contours lying entirely in D
all have value zero.
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The fact that Statement 1) implies Statement 2) is easy to see, and is very
similar to the earlier example: along any contour, we can parametrize the contour
between z1 and z2 by a ≤ t ≤ b, and see that∫

C

dz f(z) =
∫ b

a

dt f [z(t)]z′(t)

=
∫
dt
dF

dz

dz

dt

= F (z(b)) − F (z(a))
= F (z2) − F (z1) . (3.71)

Statement 2) implying Statement 3) is easy too: since contour integration only
depends on the end points, any closed contour is a sum of two contour integrals
in opposite directions, and hence has to be zero. The hard part of the proof
is that Statement 3) implies Statement 1) as well; I won’t show you the proof
here, but you can consult CB45.

Let’s do an example where try to perform the integral

I =
∫

C

dz

z
, (3.72)

where C is a circle of radius 2. Let’s evaluate this integral using our knowledge
of antiderivatives. We know that d(log z)/dz = 1/z with an appropriate choice
of a branch, so that along the contour of interest this relation holds. First,
let’s start by considering C1, the semicircle going from −π/2 ≤ θ ≤ π/2 in the
counterclockwise direction. For this, we choose the principal branch of the log,
i.e.

Log z = ln r + iΘ , r > 0 , −π < Θ < π . (3.73)

Then, since we know the antiderivative, we can immediately obtain∫
C1

dz

z
=
∫ 2i

−2i

dz

z
= Log (2i) − Log (−2i)

= ln 2 + iπ

2 − ln 2 + iπ

2
= iπ . (3.74)

Next, we consider C2, the semicircle going from π/2 ≤ θ ≤ 3π/2 in the coun-
terclockwise direction. This time, we’ll choose another branch of the log,

log z = ln r + iθ , r > 0 , 0 < Θ < 2π , (3.75)

so that the branch cut lies on the positive real axis. Doing the integral, we find∫
C2

dz

z
=
∫ −2i

2i

dz

z
= log(−2i) − log(2i)

= ln 2 + 3πi
2 − ln 2 − iπ

2
= iπ . (3.76)

Thus, ∫
C

dz

z
=
∫

C1

dz

z
+
∫

C2

dz

z
= 2πi . (3.77)

(End of Lecture: Wednesday Oct 23 2024)

61



A Midterm 1 Review
A.1 Disk on an Inclined Plane

Consider a disk of mass m and radius a rolling without slipping down a plane
inclined at an angle θ with respect to the horizontal. Denote the distance of
the center of mass of the disk from the top of the plane as x, and denote the
angle of rotation of the disk as ϕ. Obtain the equations of motion. Is the first
integral conserved?

SOLUTION:
Rolling without slipping implies a constraint given by x−aϕ = 0. There-
fore, the Lagrangian for this constrained system can be written as

L(x, ẋ, ϕ, ϕ̇) = 1
2mẋ

2 + 1
2Iϕ̇

2 +mgx sin θ − λ(x− aϕ) , (A.1)

where I = ma2/2 is the moment of inertia of the disk, and we have in-
serted the Lagrange multiplier λ. Note that for the purposes of classical
mechanics, only so-called holonomic constraints of the form f(x, ϕ) = 0
can be treated by adding the constraint to the Lagrangian through a La-
grange multiplier. Other types of constraints require more sophisticated
treatments.
Let’s write down the equations of motion for this system. The Euler-
Lagrange equation with respect to x is

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 =⇒ ẍ = g sin θ − λ

m
(A.2)

∂L

∂ϕ
− d

dt

∂L

∂ϕ̇
= 0 =⇒ Iϕ̈ = λa , (A.3)

with x = aϕ imposed by the constraint. We thus find

ϕ̈ = g sin θ − λ/m

a
=⇒ I

g sin θ − λ/m

a
= λa =⇒ λ = mg sin θ

1 +ma2/I
.

(A.4)

Note that since ẍ = g sin θ − λ/m, we can see that λ is the force of
friction acting on the disk as it rolls down without slipping, which is the
force responsible for enforcing the constraint x− aϕ = 0.
What are the conserved quantities? Since the Lagrangian depends on
both x and ϕ coordinates directly, the conjugate momenta to these
coordinates are not conserved. However, L does not explicitly depend
on time, and therefore the first integral is conserved. This is

∂L

∂ẋ
ẋ+ ∂L

∂ϕ̇
ϕ̇− L = 1

2mẋ
2 + 1

2Iϕ̇
2 −mgx sin θ + λ(x− aϕ) (A.5)

= 1
2mẋ

2 + 1
2Iϕ̇

2 −mgx sin θ , (A.6)

where the last term drops out since the constraint is enforced on-shell.
This is the translational kinetic energy plus the rotational kinetic energy
plus the total gravitational potential energy, and is conserved.
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A.2 (SG 10.13) Fluid Equations

Write out Euler’s equation for fluid motion
˙⃗v + (v⃗ · ∇)v⃗ = −∇h (A.7)

in Cartesian tensor notation. Transform it into
˙⃗v − v⃗ × ω⃗ = −∇

(
1
2 v⃗

2 + h

)
(A.8)

where ω⃗ = ∇ × v⃗ is the vorticity. Deduce Bernoulli’s theorem, that for steady
˙⃗v = 0 flow the quantity v⃗2/2 + h is constant along streamlines.

SOLUTION:
In index notation, Euler’s equation reads

∂tvi + vj∂jvi = −∂ih . (A.9)

In order to perform the transformation, first let’s observe that

(v⃗ × ω⃗)i = ϵijkvjωk

= ϵijkvj(ϵkmn∂mvn)
= ϵkijϵkmnvj∂mvn

= (δimδjn − δinδjm)vj∂mvn

= vj∂ivj − vj∂jvi . (A.10)

Therefore, we can write Euler’s equation as

∂tvi + vj∂ivj − ϵijkvjωk = −∂ih . (A.11)

Note however that vj∂ivj = ∂i(vjvj)/2 = ∂iv⃗
2/2, and so grouping

terms appropriately,

∂tvi − ϵijkvjωk = −∂i

(
1
2 v⃗

2 + h

)
=⇒ ˙⃗v − v⃗ × ω⃗ = −∇

(
1
2 v⃗

2 + h

)
(A.12)

as required.
To deduce Bernoulli’s theorem, we set ∂tvi = 0, and contract both sides
with vi. This gives

−ϵijkvivjωk = −vi∂i

(
1
2 v⃗

2 + h

)
. (A.13)

But contracting the Levi-Civita symbol with the same vector twice is
zero. Therefore,

vi∂i

(
1
2 v⃗

2 + h

)
, (A.14)

which is the statement that the quantity v⃗ 2/2 + h is constant along
streamlines.

A.3 Maxwell’s Equations from the Lagrangian

The Lagrangian density for the electromagnetic field is given by

L = −1
4FµνF

µν , (A.15)
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in Minkowski space, where Fµν = ∂µAν − ∂νAµ is the electromagnetic field
tensor, and Aµ is the four-potential. The metric that we use is

ηµν ≡ diag(+1,−1,−1,−1) . (A.16)

Obtain the equations of motion.
From the properties of the electromagnetic tensor, Prove the Bianchi identity

∂µFαβ + ∂αF βµ + ∂βFµα = 0 . (A.17)

Find the canonical energy-momentum tensor, and show explicitly that it is
conserved.

SOLUTION:
Let’s write out the Lagrangian density carefully as

L = −1
4η

µαηνβ (∂µAν − ∂νAµ) (∂αAβ − ∂βAα) . (A.18)

Now let’s take the derivative. We have
∂L
∂Aσ

= 0 (A.19)

and
∂L

∂(∂ρAσ) = −1
4η

µαηνβ
(
δρ

µδ
σ
ν − δρ

νδ
σ
µ

)
Fαβ − 1

4η
µαηνβFµν

(
δρ

αδ
σ
β − δρ

βδ
σ
α

)
= −1

4(F ρσ − Fσρ) − 1
4(F ρσ − Fσρ)

= −F ρσ , (A.20)

where in the last line I used the fact that F ρσ is antisymmetric.
Thus the equation of motion is

∂ρF
ρσ = 0 . (A.21)

For the Bianchi identity, we note that

∂µFαβ = ∂µ(∂αAβ − ∂βAα)
= ∂α∂µAβ − ∂α∂βAµ + ∂α∂βAµ − ∂β∂µAα

= ∂αFµβ + ∂βFαµ

= −∂αF βµ − ∂βFµα , (A.22)

and so ∂µFαβ + ∂αF βµ + ∂βFµα = 0 as required.
The canonical energy-momentum tensor is

Tµ
ν = ∂L

∂(∂µAσ)∂νAσ − δµ
ν L

= −Fµσ∂νAσ + 1
4δ

µ
νFαβF

αβ

(A.23)

Taking the derivative, we find

∂µT
µ
ν = −∂µF

µσ∂νAσ − Fµσ∂µ∂νAσ + 1
4∂ν(FαβF

αβ) . (A.24)
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The first term vanishes by the equation of motion, and we can rewrite the
last term as (1/2)∂νFµσF

µσ. However, by relabeling indices, commuting
derivatives, and exploiting the antisymmetry of Fµσ,

1
2∂νFµσF

µσ = 1
2 (∂ν∂µAσF

µσ − ∂ν∂σAµF
µσ)

= 1
2 (∂µ∂νAσF

µσ − ∂ν∂µAσF
σµ)

= ∂µ∂νAσF
µσ , (A.25)

where in the last line I used Fσµ = −Fµσ. Therefore,

∂µT
µ
ν = −Fµσ∂µ∂νAσ + ∂µ∂νAσF

µσ = 0 , (A.26)

i.e. the canonical energy-momentum tensor is conserved.
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B Midterm 2 Review
B.1 Matrix Derivatives

Consider an n×n matrix X, with each entry Xij being an independent variable
that can be varied. In many machine learning applications, it is useful to compute
the derivative of various quantities involving the matrix X with respect to its
entries. A giant compendium of such results can be found here. We now want
to use index notation to demystify several of these results.

Show the following results for an invertible n× n matrix X, which you can
think of representing some (1, 1)-tensor in Rn:

1.

∂X−1
kl

∂Xij
= −X−1

ki X
−1
jl . (B.1)

Let me review the golden rules of index notation:

(a) Free indices (indices that are not summed over) must agree
on both the left-hand side and the right-hand side of any
equation.

(b) Indices that are not free should be contracted in pairs, with
one upper and one lower index (unless in Rn, where the
position doesn’t matter).

(c) Contracted indices can always be relabeled, since they are
dummy indices.

(d) There should never be more than two of the same index
appearing in a term formed by the product of a bunch of
tensors, vectors etc. If this happens to you, it is likely be-
cause sum of the indices are supposed to be contracted in a
sum. Relabel your contracted indices!

First, let’s note that the multiplication of two matrices AB is
written in index notation as AijBjk, and we don’t have to worry
about index position here. We know that X−1

ij Xjk = δik = I,
where I is the n× n identity matrix, and therefore

∂

∂Xij
(X−1

kl Xlm) = ∂

∂Xij
δkm = 0 . (B.2)

On the other hand, using Leibniz’s rule gives

∂

∂Xij
(X−1

kl Xlm) =
∂X−1

kl

∂Xij
Xlm +X−1

kl

∂Xlm

∂Xij

=
∂X−1

kl

∂Xij
Xlm +X−1

kl δilδjm (B.3)
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From here, we see that

∂X−1
kl

∂Xij
Xlm = −X−1

kl δilδjm

∂X−1
kl

∂Xij
XlmX

−1
mp = −X−1

kl δilδjmX
−1
mp

∂X−1
kl

∂Xij
δlp = −X−1

ki X
−1
jp

∂X−1
kp

∂Xij
= −X−1

ki X
−1
jp , (B.4)

which you can check is equivalent to the required expression by
just a relabeling of the indices.

2. For a constant matrix A, show explicitly that Tr(XA) is a scalar if these
matrices are taken to represent tensors, and that

∂

∂Xij
Tr(XA) = (AT )ij = Aji , (B.5)

where T denotes the transpose.

First, let’s write the trace properly in index notation, paying some
attention to the placement of indices: Tr(XA) = XijAji. Under
a coordinate transformation,

Xij 7→ X ′ij = ai
ka

j
lX

kl

Aji 7→ A′
ji = (a−1)k

j(a−1)l
iAkl (B.6)

Therefore,

XijAji 7→ (a−1)p
ia

i
k(a−1)m

ja
j
lX

klAmp

= δp
kδ

m
l X

klAmp

= XklAlk , (B.7)

i.e. XijAji does not transform under a coordinate transformation
and is a scalar. Notice how I relabeled the contracted indices on
A′ to avoid having more than two of the same index.
At this point, we can see immediately that

∂

∂Xij
XklAlk = δk

i δ
l
jAlk = Aji , (B.8)

proving the relation. Notice again that I was careful to label XA
using indices k and l, which again avoids having more than two of
the same index.

3. The following relation is true for any n× n matrix X:

Xjk
∂

∂Xik
det(X) = δijdet(X) . (B.9)

Show that it is true for the case where n = 3.
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The determinant in the 3 × 3 case can be written as

det(X)ϵlmn = ϵijkXilXjmXkn . (B.10)

Taking the derivative, we find

∂

∂Xpq
det(X)ϵlmn = ∂

∂Xpq
ϵijkXilXjmXkn

=ϵijk (δipδlqXjmXkn +XilδjpδmqXkn

+XilXjmδkpδnq)

Xrq
∂

∂Xpq
det(X)ϵlmn =ϵijk (δipδlqXjmXkn +XilδjpδmqXkn

+XilXjmδkpδnq)Xrq (B.11)

Multiplying both sides by ϵlmn, and noting that ϵlmnϵ
lmn = 3!,

we find

3!Xrq
∂

∂Xpq
det(X) =ϵijkϵlmn (δipδlqXjmXkn +XilδjpδmqXkn

+XilXjmδkpδnq)Xrq

=ϵpjkϵlmnXrlXjmXkn + ϵipkϵlmnXilXrmXkn

+ ϵijpϵlmnXilXjmXrn . (B.12)

You can show that for example ϵlmnXrlXjmXkn = det(X)ϵrjk

from Eq. (B.10), by noting that det(A) = det(AT ). Thus, we find

3!Xrq
∂

∂Xpq
det(X) = (ϵpjkϵrjk + ϵipkϵirk + ϵijpϵijr)det(X)

= 3ϵpjkϵrjkdet(X)
= 3 × 2δrpdet(X) , (B.13)

giving finally

Xrq
∂

∂Xpq
det(X) = δprdet(X) , (B.14)

as required.

B.2 2+1D Electrodynamics

Consider electrodynamics with 1 time-like dimension, and 2 space-like dimen-
sions. The electromagnetic field strength two form is still defined as

F = −1
2Fµν dxµ ∧ dxν , (B.15)

with coordinates (x0, x1, x2) ≡ (t, x, y), and metric g = dt2 − dx2 − dy2,
adopting the mostly minus convention. In terms of the components of the usual
electric and magnetic fields,

Fµν =

 0 Ex Ey

−Ex 0 −B
−Ey B 0

 . (B.16)

Furthermore, let the one-form current J = ρdt−jx dx−jy dy, where Jµ = (ρ, j⃗)
are the usual charge density and current density vector respectively. Note that
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we can write
F = −Ex dt ∧ dx− Ey dt ∧ dy +B dx ∧ dy . (B.17)

1. Write down Maxwell’s equations, dF = 0 and d ⋆F = ⋆J , in component
form for 2+1D electrodynamics.

First, we see that

dF = (−∂yEx + ∂xEy + ∂tB)dt ∧ dx ∧ dy = 0 , (B.18)

which in index notation reads

ϵij∂iEj = −∂tB , (B.19)

where ϵij is the two-dimensional Levi-Civita tensor. This is the
equivalent of Faraday’s law. Next, we find

⋆F = Ex dy − Ey dx+B dt , (B.20)

and therefore

d ⋆F =∂xEx dx ∧ dy + ∂tEx dt ∧ dy − ∂tEy dt ∧ dx
− ∂yEy dy ∧ dx+ ∂xB dx ∧ dt+ ∂yB dy ∧ dt

= − (∂tEy + ∂xB)dt ∧ dx+ (∂tEx − ∂yB)dt ∧ dy
+ (∂xEx + ∂yEy)dx ∧ dy (B.21)

On the other hand,

⋆J = ρdx ∧ dy − jxdt ∧ dy + jy dt ∧ dx . (B.22)

Comparing both expressions, we find the equivalent of Gauss’s law,

∂xEx + ∂yEy = ρ , (B.23)

and the equivalent of Ampere’s law,

∂xB = −jy − ∂tEy ,

∂yB = jx + ∂tEx . (B.24)

2. Derive the continuity equation.

The continuity equation can be derived from the fact that d ⋆J =
d2 ⋆F = 0. But

d ⋆J = (∂tρ+ ∂xjx + ∂yjy)dt ∧ dx ∧ dy = 0 , (B.25)

and we obtain the continuity equation

∂tρ+ ∂xjx + ∂yjy = 0 . (B.26)

B.3 Complex Numbers, Cauchy-Riemann Equations, Harmonic Func-
tions

1. Show that for z = x+ iy,

Re[log(z − 1)] = 1
2 ln[(x− 1)2 + y2] . (B.27)
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Why must this function satisfy Laplace’s equation when z ̸= 1?

First,

log(z − 1) = log((x− 1) + iy)
= lnR+ i(Θ + 2kπ) , k ∈ Z , (B.28)

where R =
√

(x− 1)2 + y2, and Θ = tan−1((y − 1)/x). There-
fore,

Re[log(z − 1)] = ln
√

(x− 1)2 + y2 = 1
2 ln[(x− 1)2 + y2] ,

(B.29)

as required. It must be satisfy Laplace’s equation since it is the
real part of the function log(z − 1), which is analytic except at
z = 1.

2. Find the values of (1 + i)i, as well as the principal value.

(1 + i)i = exp (i log(1 + i))

= exp
[
i log

(√
2eiπ/4

)]
= exp

[
i
(

ln
√

2 + i
(π

4 + 2kπ
))]

, k ∈ Z

= exp
(

−π

4 − 2kπ
)
ei ln

√
2 , k ∈ Z . (B.30)

The principal value is obtained by using Log instead of log, giving

P.V.(1 + i)i = e−π/4ei ln
√

2 . (B.31)

3. Let u(x, y) = ln(x2 + y2), x2 + y2 > 0. Show that u is harmonic, and
find its harmonic conjugate.

∂xu = 2x
x2 + y2 =⇒ ∂2

xu = 2
x2 + y2 − 4x2

(x2 + y2)2 , (B.32)

and similarly

∂2
yu = 2

x2 + y2 − 4y2

(x2 + y2)2 (B.33)

by symmetry. We now see that

(∂2
x + ∂2

y)u = 4
x2 + y2 − 4(x2 + y2)

(x2 + y2)2 = 0 , (B.34)

and so (∂2
x + ∂2

y)u = 0, and u is harmonic. To find the harmonic
conjugate, we need to find v(x, y) such that ∂xu = ∂yv, and
∂yu = −∂xv. We have

∂xv = − 2y
x2 + y2 =⇒ v = −2 tan−1

(
x

y

)
+ f(y) , (B.35)
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where f(y) is an arbitrary function of y (including possible con-
stants). Similarly,

∂yv = 2x
x2 + y2 =⇒ v = 2 tan−1

(y
x

)
+ g(x) (B.36)

with g(x) being another arbitrary function, this time of x (including
possible constants). Recall from trigonometry that

tan−1(1/x) + tan−1(x) = π

2 , (B.37)

and so we see that the harmonic conjugate to u(x, y) is

v(x, y) = 2 tan−1
(y
x

)
+ C (B.38)

for some arbitrary constant C.

B.4 Complex Integration I

Let C be the contour, consisting of the following four pieces:

1. From −2 to −1 along a straight line.

2. From −1 to +1 along the semicircular arc (radius 1, centered at 0) lying
above the real axis.

3. From 1 to 2 along a straight line.

4. From 2 to -2 along the semicircular arc (radius 2, centered at 0) lying
above the real axis.

Compute ∫
C

dz
z

z∗ . (B.39)

Along leg 1, we have ∫ −1

−2
dx

x

x
= 1 . (B.40)

Along leg 2, we have z = eiθ, and∫ 0

π

dθ
dz

dθ

eiθ

e−iθ
= i

∫ 0

π

dθ ei3θ = 1
3(1 − ei3π) = 2

3 . (B.41)

Along leg 3, we have once again∫ 2

1
dx

x

x
= 1 . (B.42)

Finally, for leg 4, we have z = 2eiθ, and∫ π

0
dθ

dz

dθ

2eiθ

2e−iθ
= 2i

∫ π

0
ei3θ = 2

3(ei3π − 1) = −4
3 , (B.43)

with the result being very similar to above. Therefore,∫
C

dz
z

z∗ = 4
3 . (B.44)

71



B.5 Complex Integration II

Let’s evaluate ∫
C

dz za−1 (B.45)

for some nonzero real number a, where C is the positively oriented circle z =
Reiθ, with −π ≤ θ ≤ π. We choose the principal branch with −π < arg(z) < π.

The integral is simply∫ π

−π

dθ
dz

dθ
za−1 =

∫ π

−π

dθ iReiθ ·Ra−1ei(a−1)θ

= iRa

∫ π

−π

dθ eiaθ

= iRa

[
eiaθ

ia

]π

−π

= Ra

a

(
eiaπ − e−iaπ

)
= Ra

a
(2i sin(aπ))

= 2i
a
Ra sin(aπ) . (B.46)
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