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1 Preamble, Recap and Index Notation

By now, you have already taken several courses in electromagnetism, and you're
about to start on yet another course in electromagnetism. You might be won-
dering, why are you constantly repeating this subject as a physics major?

The most immediate answer is that the electromagnetic force governs pretty
much everything that you encounter in your daily life, and so it is incredibly
important to study it, not just for technological reasons, but for understanding
many physical processes that you might be interested in studying as a physicist.
From a theoretical perspective though, electromagnetism is your first example
of a field theory: the fundamental objects are not discrete particles at fixed
positions in time (as they are in mechanics), but rather fields that are defined
at every point in space and time. Electromagnetism as taught in this class
is an important example of what we call a classical field theory. These are
models where the main actors are fields that exactly obey a set of equations
of motion, which we call Maxwell’s equations in E&M. To be honest, E&M
isn't the simplest classical field theory to study, but it happens to be one of
the most important ones in nature. In some sense, you can view this class as a
stepping stone toward quantum field theories, where quantum mechanics and
field theories are brought together; it is no exaggeration to say that quantum
field theories underpin all of modern physics, and is our main theoretical frame-
work for understanding many systems of interest in condensed matter physics,
particle physics, cosmology and beyond. The particular combination of quan-
tum mechanics and electromagnetism is known as quantum electrodynamics
(QED), one of the most remarkable physical theories we have ever developed,
but that will be left for a higher level class.

Instead, we will focus on understanding the classical theory first. In PY405,
you've learned a lot about Maxwell's equations, the equations of motion of this
theory, and the be all and end all of classical E&M, really. In some sense, there's
nothing else to study! In PY406, however, we'll be focusing a lot on electro-
magnetic waves. One very interesting result that we'll see almost immediately
is that the fields in this field theory not only interact with particles, but can also
exist and propagate on their own as waves: it is in fact entirely self-consistent
to study electromagnetism even if charges didn't exist. We'll study how these
waves propagate (through different media, in different geometries, etc.), how
they transport energy and momentum, and how they are produced.

Another goal of this course is to take a deeper theoretical dive into E&M as a
classical field theory. We'll see how the EM fields can equivalently be described
in terms of potentials, and a unique property of these potentials known as gauge
freedom. We will also see that E&M is, inescapably, a relativistic field theory;
nothing about E&M makes sense without relativity. That's a deep result that
will require us to spend some time understanding special relativity, but is a
deeply satisfying perspective once you see it.

So let's dive right in! I'll begin by sketching some of the main results from
PY405 that you've seen a great detail, with the goal of reminding you not just
of the results, but also to give you some intuition for them.

1.1 Integral Form of Gauss’s Law

The electromagnetic force acts between objects that carry electric charge g.
g can be positive or negative, and we measure the electric charge in units of
Coulombs in the Sl system, which we’ll use for the first half of this course. For
two point charges with charges ¢ and ¢, with ¢ at the origin, and @Q at position



T, then the force between these two particles is given by Coulomb’s law as

qQ
F = 1.1
47Teo7°2r’ (1.1)

where ¢ is an empirically measured constant,!

€0 = 8.8541878188(14) x 10712 C2 Nt m~2, (1.2)
The electric force is therefore a central force, acting along the line connecting
two charges, and follows an inverse square law.

Since the force exerted by a point charge g on a charge ) located at some
arbitrary point in space is directly proportional to @), we can think of every point
charge as sourcing an electric field across all of space, defined as

q
E= 47r60r2r7 (1.3)
with F = QE.

Thinking in terms of electric fields is extremely helpful. Electric fields origi-
nate from positive charges which act as sources of these fields, and then must
terminate on negative charges, which act as sinks. You would expect, intuitively,
that in a small region of space with no charges, that somehow the “number of
field lines” going in should cancel with the “number of field lines” going out,
since there are no sources or sinks of the field in that region.?

We make this intuition more precise by defining the electric flux. Consider
some small surface with area d.S, with a normal vector given by fi. Then the
electric flux through this small surface d® is defined as

d®=dS-E, (1.4)
where S = ndS. This rigorously defines what we had intuitively meant by
“number of field lines” flowing through a surface (see Fig. 1). Let's then now
consider a region of space enclosing no charges: we would then expect that the
total electric flux through the closed surface around this region is

]{ dS-E =0,

where the circle is a reminder that we're integrating over a closed surface, and
vac indicates that it is a region with no charges.

What if there are charges in the enclosed region? Let's first consider a point
charge ¢, and calculate the total electric flux through a spherical surface of radius
r centered at the charge. The electric field of the point charge points radially
outward, and always intersects the surface 0B of the sphere B perpendicularly;
we therefore have

(1.5)

dS~E:47rr2~L= e

—. 1.6
9B Amegr? € (1.6)

Now, let's place this point charge in some arbitrary enclosed region V', and draw
a little spherical region B around it of radius r (see Fig. 2). In the region
between the surface of the sphere 9B and OV the boundary of V, which we
denote V' — B, there are no charges, and so we expect as above that

7( dS E=0. (1.7)
a(V—B)

L Do not be mystified by 4mey: this is
just a proportionality constant that en-
sures that when you plug in Coulombs for
the charges, and meters for the distance,
you'll get back the right answer for the
force in Newtons. If we had chosen an-
other system of units, which we will later
on in the course, we would need to adopt
a different proportionality constant.

2 This is in all honesty extremely mislead-
ing, since things are not as inevitable as
it sounds here, but it does give the right
result in the end.

Figure 1: The definition of electric flux.

Figure 2: An arbitrary volume V with a point
charge q surrounded by a spherical volume B.



But the total flux through V — B can be divided into two parts: the flux
penetrating V — B from the point charge within B, and the flux exiting V — B
through the boundary of V, i.e.

7{ dS-E:y{ ds-E—y{ dS-E. (1.8)
a(V—-B) ov oB

Note the minus sign in front of the second term: the normal vector on the surface
OB points inward into V — B, opposite to the direction you would define the
normal vector on the surface with respect to the enclosed region V — B. We
therefore conclude that

]{ as-E=1. (1.9)
oV €0

The intuitive generalization of this result gives us the following result, our
first encounter with one of Maxwell's equations:

The integral form of Gauss’s law states that the total electric flux
through any closed surface is proportional to the total charge Qenc en-
closed within that surface, i.e.

?{dS«E:anC.

€0

(1.10)

1.2 Divergence Theorem and the Differential Form of Gauss’s Law

The integral form of Gauss's law relates the flux over some extended surface to
the enclosed charge within some region, but it turns out that we can rewrite
it as a local relationship between the electric field and the charge density at a
particular point in space.

Let's begin by considering some volume V', enclosed by some closed boundary
that we denote OV. Define the usual Cartesian coordinates (z,y, z), and chop
up this volume into tiny boxes, each with volume dV = dxdydz. Let's zoom
in to one of the boxes deep in the interior of V. The flux through this tiny
box is given by the sum of the fluxes through each of its six faces, but you'll
see immediately that the flux through one face is equal but opposite to the flux
through the same face of the neighboring box. This tells us that the flux through
OV can simply be thought of as the sum of the fluxes through all of these tiny
boxes, since all of the interior faces cancel out (see Fig. 3).

Now, what is the flux through one of these boxes? The net flux through the
two faces perpendicular to the z-axis is given by (see Fig. 4)

d‘bx = Ex|(z+da;,y,z) : dy dz — E@-|(w)y7z) : dy dz

OF, dedydz,

- (1.11)

where E,|(; .- is the 2z-component of the electric field at the box located at
(2,9, 2), and | have simply Taylor expanded the field to the lowest order.3 You
can go on to show that likewise

OF OF
d®, = tdedydz, dP. = Z=drdyds. (1.12)
Putting everything together, the total flux through the tiny box is
d® = (V- -E)daxdydz, (1.13)

i

L,z
s
APt

P

A

/

Figure 3: The flux through a small, interior box
is equal and opposite to the fluxes through the
neighboring boxes, due to the equal and opposite
normal vectors on the shared faces.

3 We are dealing with infinitesimal boxes
here, and so we only need to keep the
lowest order contribution.
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Figure 4: Flux along the two faces perpendicular
to the z-axis.



where | have defined the divergence of the electric field as

0E, OE, OF,

-E .
v 8x+8y+8z

(1.14)

End of Lecture: Wednesday, Jan 21 2026

Hence, using the argument above, we can see that the total flux through the
closed surface OV is given by summing up the fluxes through all of these tiny
boxes, i.e. we have the following result:

The divergence theorem states that the total flux through a closed
surface OV is equal to the volume integral of the divergence of the field
over the enclosed volume V/, i.e.

avdS-E:/Vd@:/vdr(V~E). (1.15)

Cool, let's apply this to the integral form of Gauss's law. Applying the
divergence theorem, we find

/d3r (V-E) = Qene _ l/ d®rp, (1.16)
v \4

€0 €o

where p is the charge density. Since the integral form of Gauss's law is true
for any enclosing surface, the relation above must be true for any V', which
means that the integrands on the LHS and RHS themselves must be equal. We
therefore arrive at the following:

The differential form of Gauss’s law, given by

v-E=2. (1.17)
€

Note that this is a local relationship between the divergence of the electric field
at some point in space, and the charge density at that point in space. It is
also a partial differential equation, and solutions to it can only be obtained after
specifying appropriate boundary conditions.

1.3 Index Notation Part I: Dot Products

We now take an important detour here to introduce a bit of notation, known
as index notation, that we'll find very useful throughout the course.* We'll
denote the three spatial components (z,, z) as (z!, 22, 23) respectively, and
likewise denote the components of the 3D spatial vector A by A’ or A;, where
i = 1,2,3 corresponds to the x,y,z components respectively. Then we can

write a dot product between two vectors A - B as

3 3
A -B=A'B, + A2By + A®B; :ZAiBi :ZAJ‘Bj. (1.18)
j=1

i=1

Aside from the upper and lower index placements, this shouldn't be particularly
surprising; we'll come back to upper and lower indices later. |'ve written the
last expression by relabeling ¢ — j, as a reminder that the index is completely

4 Qur main textbook, Griffiths, decided
against using this notation, but I'm not a
fan of this decision for several reasons.
First, it's really not so hard. Second,
index notation makes many derivations
much clearer, once you learn a few tricks.
Finally, it is simply indispensable in rel-
ativity, and since we're going to cover
that in this class, there simply is no point
avoiding it.



arbitrary: they are dummy indices, and you can rename them to anything you
want.

The next sleight-of-hand we'll introduce is known as the Einstein summa-
tion convention. In almost all physics equations, you will find that any sum
over indices involves summing over all possible values of the index, and pairs of
quantities with the same index. As such, we can drastically simplify our notation
by simply dropping the summation sign, and remembering that any repeated in-
dices should be summed over all components.> With this, the dot product is
simply written as

A-B=AB;. (1.19)

While we are on the topic of the dot product, let me throw some more
notation at you just to get it out of the way:

The Kronecker delta 5;- is defined as

g=ql = (120)
J 0 ifi#j.

This is often a useful object to have around. When it is contracted with another
vector, 6§Aj = A?, and you can think of the Kronecker delta as saying “every-
where you see a j, you can replace it with an ¢". In 3D Euclidean space, you
can also write this as 6%/ or di;, which all have the same meaning. As such, the
dot product can be written as

A -B=;;A'B7, (1.21)

and you can think of d;; as an object that dots A into B, or in physics jargon,
contracts A with B. Notice that d;; = d;;, i.e. the Kronecker delta is symmetric
with respect to its indices. This is very important in manipulating expressions
involving the Kronecker delta later on.

I'll gradually introduce this notation over the next few lectures, and give you
a detailed set of rules for how to manipulate indices after a few examples. For
now, let me just make a remark about the placement of indices: when dealing
with 3D vectors in regular Euclidean space, the placement of indices doesn't
matter, and this is the situation we'll be in for the first part of this course.
However, to get into the habit for when we need it, | will always write repeated
indices with one upper and one lower index, and you should try to get into this
habit t00.°

There is something very important about the dot product that | want to
highlight here, which you probably already know, but it's worth stating clearly;
remembering this will be key to helping you understand relativity later on. The
components of a vector A, A’ necessarily depends on your choice of coordi-
nate system: your x-axis could be someone else's y-axis, for example. But as
you already know, the dot product of a vector with itself gives a length, and
(without knowing anything about relativity at this point!), different observers
with coordinate systems differing by a rotation or translation will all agree on
the length of a vector. The same is true for the result of any dot product.

A more jargony way of saying this is that the contraction of two vectors
like A; B* produces a scalar, a quantity that is invariant under any change
in coordinate systems.

5 We also frequently say that the repeated
indices are contracted.

6 It is extremely common in the literature,
however, to write contracted indices as all
subscripts, but you should learn the rules
well before you can understand when they
can be broken.



Finally, we will also define the notation 0; = 8/8xi. With this, we can write

V-E=0,E". (1.22)

1.4 Ampere’s Law in Magnetostatics, Stokes’ Theorem and the Lorentz
Force Law

While charges source electric fields, moving charges or currents source magnetic
fields B. In the magnetostatic regime where we only deal with time-independent
currents, the end result bears a strong resemblance to Gauss's law itself:

The integral form of Ampere’s law under magnetostatic conditions
states that the line integral of the magnetic field B around a closed loop
is proportional to the total current I.,. passing through any surface
bounded by that loop, i.e. (see Fig. 5)

y{dl B = pioLenc - (1.23)

The constant pg is’

o = 1.256 637061 27(20) x 107 NA~2 (1.24)

and the magnetic field is measured in teslas, 1T = INA ' m™!, in the SI
system. Comparing this with Gauss's law, you can see the resemblance: in
Gauss’s law, a closed surface integral of the electric field is proportional to the
enclosed charge, while in Ampere's law, a closed line integral of the magnetic
field is proportional to the enclosed current.

Once again, we would like to transform this into a differential form which is
local, relating the magnetic field at a particular point in space to the sources at
that same point. As before, let's take any surface bounded by the closed loop
that we're considering, and chop it up into tiny surface elements, each with area
dS. If we now sum over the integral of B around each of these tiny surface
elements, we can see that once again, the contributions from the interior edges
cancel out, leaving only the contribution from the outer boundary (see Fig. 6).

Let's consider one of these tiny surface elements located at coordinates
(2,9, 2), and choose a coordinate system such that the normal vector i of this
surface element points along the z-axis, and the sides are aligned with the z
and y axes. The line integral of B around this tiny surface element dC' is then
given by

dC = B:r‘(:c,y,z) ~do — Bm‘(m,y+dy,z) ~dx — Bu'(m,y,z) : dy + By'(m+dz,y,z) : dy

_ (0B, 0B,
= ( ar oy )dxdy
=(V xB)-ds, (1.25)

where dS is the area element vector for this tiny surface element, and the curl
of the magnetic field is defined as

0/0x B, 0B /0y — 0B, /0z
VxB=|[90/0y| x| By | =|0B,/0z—0B./0x (1.26)
0/0z B, 0B, /0x — 0B, /0y

Since we have written dC' as a dot product, dC is a scalar which has the
same value in every coordinate system, and is always given by the dot product
(V x B) - dS regardless of the orientation of the surface element.® We can
therefore sum over all of these tiny surface elements to find the following result:

Figure 5: lllustration of Ampere’s law.

" o used to be defined exactly as 47 x
10" N A~2, but since 2019, this has now
become a measured quantity. Again, you
should not be mystified by this: it's just
a proportionality constant to ensure the
right units, i.e. so that the magnetic field
comes out as teslas.

B (¢, y+dy,2)
xﬁ;\j«— Yy 2
/TBJ(X'&%) \1%5 (x+dx, 4,3
Bz._(?f,j.%\
_—>

Cay2)

Figure 6: Cancellation of line integrals in the
interior, and the magnetic field lines in a loop.
8 This type of argument is tremendously
powerful once you understand it, and
crops up very frequently in physics.



Stokes’ theorem states that the line integral of a vector field B around
a closed loop 0S is equal to the surface integral of the curl of that vector
field over any surface S bounded by that loop, i.e.

]gsdl-B:/SdC:/Sds.(vXB)_ (1.27)

We can now apply this to the integral form of Ampere's law. Using Stokes’
theorem applied to any closed loop 95 and the surface S bounded by the loop,
we have

?{ dl-B = / dS - (V x B) = polenc - (1.28)
a8 S

Writing I, as the surface integral of the current density J through the surface
S, we find

/SdS~(V><B):u0/SdS~J. (1.29)

Since this is true for any loop, we obtain the differential form of Am-
pere’s law under magnetostatic conditions,

V x B = poJ . (1.30)

Once again, this is a local relationship between the curl of the magnetic field
at some point in space, and the current density at that same point in space. It
is a partial differential equation, and can be solved once appropriate boundary
conditions are specified.

7

Finally, magnetic fields also exert a force on particles with charge ¢,
which when combined with the electric field gives the Lorentz force
law for the force acting on a charged particle,

F=¢E+vxB), (1.31)

where v is the velocity of the charged particle.

1.5 Index Notation Part Il: Cross Products

We had previously seen that we could write V - E = 9;E*, and now we want
to extend index notation to write cross products too. To do this, we need to
introduce the following nifty object:

The 3D Levi-Civita symbol €;;; or €% is defined as

+1 if (4,7,k) is an even permutation of (1,2,3),
€ijk = —1 if (4,4, k) is an odd permutation of (1,2,3), (1.32)
0 if any two indices are equal .
A permutation just means a swap between two indices, and so an even

permutation of (1,2,3) is any arrangement obtained by swapping an
even number of times, and similarly for odd permutations.




Based on the definition, there are only 6 combinations of (i,j,k) that give
non-zero values for ¢;;5, which are:

€123 = €231 = €312 = +1,
€213 = €132 = €321 = — 1. (1.33)

We say that the Levi-Civita symbol is antisymmetric, because switching any
two indices results in the minus sign. This will be a very important fact when
we perform manipulations on the Levi-Civita symbol later on.

How does this help with the cross product? Let's consider two vectors A
and B: | claim that the i-th component of their cross product A x B can be
written as

3
(A X B)z = Z Z EijkAjBk = EijkAjBk 5 (134)
J=1k=1

where in the last step I've just dropped the summation signs by adopting the
Einstein summation convention, where every repeated index is summed over all
possible values. Let's check that this is true. Let's choose ¢ = 1 to start with:
even though the sum runs through many different indices, most of the entries are
zero because of the properties of the Levi-Civita symbol, leaving only terms with
(J, k) = (2,3) and (3,2) contributing. However, they contribute with opposite
signs, and so we find

GijkAjBk = 612314233 + 613214332 = A%2B3 — A3B? R (135)

which is exactly (A x B);. You can check the other components yourself to see
that it does indeed work out. We can thereefore also write Ampere's law in the
magnetostatic limit as

€ijkd B* = 1o J; (1.36)
with &7 acting on B*.

Example 1.1

This notation is extremely powerful, and you'll start to get a sense of why
very soon, but let's start with something simple: consider the cross product
of a vector A with itself, i.e. A x A. Using index notation, we have

(A x A); = e ATAR. (1.37)

Can we see that this is zero?

SOLUTION:

Indeed we can, by remembering that repeated indices are part of a sum,
and can be relabeled at will! Relabeling j — k and k — j, we find

€ AT AR = e ; AP AT = —¢;5, AR AT (1.38)

where in the last line we've used the fact that the Levi-Civita symbol is
antisymmetric. But since A7 A% = AF A7, we see that

eijkAjAk = —EijkAjAk 5 (139)

which is only possible if eijkAjAk is zero. A quick way to understand this is
that A7 A is symmetric under the swap j <+ k, while €ijk IS antisymmetric;
and the contraction of a symmetric and antisymmetric object is always zero.




Before moving on, | want to point out and summarize several incredibly
important things about index notation here. Understanding the following is
crucial to using index notation effectively!

1. Once you've rewritten a vector equation in index notation, every
quantity other than derivatives is just a number, and not a
vector anymore. So you can shuffle them up at will:

EijkAjBk = eijkBkAj = BkeijkAj = (1.40)

Derivatives of course have to follow the object that they are acting
on, so e.g. 0;F7 has to be kept together, but you can move the
whole thing around as a unit: it's just a number!

2. In any equation with index notation, an index that occurs by itself
is what we call a free index. Free indices must match on both
sides of an equation: after all, if you want the LHS to equal the
RHS, then both sides must agree component by component.

3. Contracted indices can only occur in pairs. If you ever have more
than two of the same index, something has gone horribly wrong,
and you need to start over. This is almost always because you
used the same index for two different purposes, and you need to
relabel some of them to avoid confusion.

4. You can always relabel indices. For free indices, you can relabel
them consistently on both the LHS and the RHS. For contracted
indices, you can relabel the pair with any letter you'd like, since
they are dummy indices.

5. Get into the habit of writing repeated indices with one upper
and one lower index. This is not strictly necessary in Euclidean
space, but it will become necessary in relativity, and so it’s best
to get into the habit now. You can also always take a pair of
contracted indices, and swap their positions, i.e. turn A;B? into
A'B; and vice versa.

6. Pay attention to objects that have symmetric indices, and objects
that have antisymmetric indices, since you can often simplify ex-
pressions by swapping indices around. Contracting a symmetric
object with an antisymmetric object, for example, always gives
zero.

7. Although the placement of indices doesn’t matter in Euclidean
space, you should get into the habit of trying to align the indices
correctly, i.e. if it is an upper index on the LHS, it should be an
upper index on the RHS too.

Example 1.2

Show the following second-derivative identities:

Vx(VT) =0, V-(Vxv)=0. (1.41)

SOLUTION:
You've seen these identities in PY405, but now let's write things out slowly
in index notation. For the first identity, V1 is a vector, whose i-th compo-




nent we can write as (VT); = 9;7. The curl can then be written as

= €T, (1.42)

with both partials acting on 7. But now let's take a closer look at §79F:
except for pathological functions usually of no interest in physics, partial
derivatives commute, and hence the object 70% = 997 is symmetric with
respect to i <> j. If this wasn't clear to you, you can go back to Example 1.1
and perform the same manipulation with the indices yourself. Since this is
contracted with the antisymmetric Levi-Civita symbol, we conclude that
€ijk070FT = 0, and hence V x (VT) = 0 as required.

The second identity is also likewise very straightforward: we can write it as

V- (V x v) = 0 (eij50"0") = €;,,0'070" | (1.43)

and for exactly the same reason above, this is zero as well. Note that €;;y, is
Jjust a number: you can pull it out past the derivative as | have done here.

1.6 Index Notation Part Ill: Triple Products

Something else that comes up pretty often is the triple product, A x (B x C),
or in vector calculus, V x (V x v). Let's try to write this in index notation:

[V X (V X V)]Z Eijkaj(v X V)k
Eijkaj (ekl"”alvm)
EijkEkhnajaﬂJm

= ekijeklmajawm. (1.44)

In the last line, | performed two swaps of the indices (ijk — ikj — kij) to bring
k to the front. Again, let me remind you that as long as you are careful with
which quantity the derivatives act on, you can shuffle around all of the quantities
here as you like, since they are all just numbers. It's also good practice to check
that the free indices on both sides agree at the end, and that all other indices
are contracted in pairs.

Let's take a closer look at €y;je Suppose (z,7) = (1,2): then when we
perform the sum over k, only k£ = 3 leads to a nonzero result, and furthermore,
there are only two nonzero combinations for (I,m), (1,2) or (2, 1), with the first
combination leading to +1 and the second to —1. A very compact way to write
this result is as follows:

klm

erije™™ = 6.6 — 676l (1.45)

a result well worth keeping in your back pocket. Applying this to the triple
product, and remembering that contracting with the Kronecker delta 8! just
tells you to replace i with [ (or [ with ¢, whichever you prefer), we get

[V X (V X V)L = ekijeklmajalvm

= (6,67 — 6"8%)0 Oy
= 0j8ivj — 8’6]-111- . (146)
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Let’s take a look at each term separately. For the first term, partial derivatives
commute, and so we can write 070;v; = 0;07v;, which is just 0;(V - v) =
[V(V - v)];. For the second term, we see that

02 0? 0?

+o5+

D05 =001+ 0 +0°0s = 55 oy T 02

=V?, (1.47)

and so, 379;v; = [V?v];. Putting everything together, we recover the identity
Vx(Vxv)=V(V-v)- V3. (1.48)

As you can see, index notation makes this derivation very straightforward, once
you're familiar with the identity given in Eq. (1.45). You almost never need any
other identity beyond this one in 3D, and if you do, the Wikipedia article on
the Levi-Civita symbol has a comprehensive list. This saves you from having
to remember all kinds of vector calculus identities, and makes derivations and
manipulations much more transparent, once you get used to it!

1.7 Gauss’s Law for Magnetism and Faraday’s Law

The mathematical structure for the two remaining Maxwell’s equations that we
haven't discussed so far are very similar to what we've seen for Gauss's law and
Ampere's law, and so I'll just go through them rapidly.

First, we have Gauss's law for magnetism, which states that there are no
sources or sinks for magnetic fields, i.e. there is no equivalent of “magnetic
charge” in classical electromagnetism.®

With no magnetic charges, the integral form for Gauss’s law for mag-
netism reads

deB:o, (1.49)

for any surface enclosing a finite volume.

Applying the divergence theorem to an arbitrary volume V' with enclosing surface

ov,

f ds-B:/d?’r(v.B):o, (1.50)
ov 14

leading to the differential form of Gauss’s law for magnetism,

V-B=0. (1.51)

Finally, toward the end of PY405, you started thinking about dynamics,
where quantities started to have time-dependence. One of the key results was
that electric fields are not just sourced by charges, but can also be sourced by
magnetic fields.

This is encapsulated in the integral form of Faraday’s law, which states
that the line integral of the electric field E around a close loop is equal
to the negative of the rate of change in the magnetic flux through any
surface bounded by the loop, i.e.

d
fdl-E_—&/ds-B. (1.52)
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9 This is not to say that they're mathe-
matical impossible, but if they did exist,
then we would need to study a slightly
different field theory than the one that
we're studying here. This is not a dis-
turbing possibility at all: classical electro-
magnetism is already incomplete, having
no quantum effects at all, and so you're
already studying an approximation here.



Applying Stokes’ theorem to the integral on the left around some arbitrary closed
loop OS of a surface S bounded by the loop, we have

]{d1~E:/dS-(VxE):—g/dS-B:—/dS-a—B, (1.53)
a8 s dt Js s ot

leading us to the differential form of Faraday’s law,

0B

E=——.
V x T

(1.54)

1.8 Charge Conservation and the Ampere-Maxwell Law

Charge is a conserved quantity: within any volume V', any change in the total
charge within the volume must be carried away by currents flowing across the
boundary of the volume, V. Mathematically, this is expressed as

%+7{ dA-J=0 (1.55)
dt oV

where Qenc is the total charge enclosed within the volume V. Writing Qenc as
the volume integral of the charge density p, we have

dQenc_i 3 _/ 3 @
& _dt/vd rp= Vdrat. (1.56)

On the other hand, applying the divergence theorem to the surface integral of
the current density, we have

7{ dS-J:/d3r(V-J). (1.57)
ov 1%
Putting the last three equations together, we have
0
/d% (p+V~J) ~0, (1.58)
v ot

which is true for any arbitrary volume V.

Therefore, the integrand itself must be zero, which gives us the conti-
nuity equation expressing local charge conservation,

Ip
.J = 1.
e +V-J=0, (1.59)
Or, in index notation,
op ;
Lioari=o0. 1.
5 + 0;J (1.60)

This will be the last time | will write both vector notation and index notation
out explicitly; you should feel comfortable moving between them from now on.1®

Let's take a closer look at Ampere's law in the magnetostatic limit, eijkajB’“ =
odi. We know that taking the divergence of the LHS gives

9" (€110 B*) = €;;#0'0"B* = 0, (1.61)

since we are contracting a symmetric object 9’97 with the antisymmetric Levi-
Civita symbol (see Ex. 1.2 if this is still confusing). On the RHS, however, we
have

,uoﬁiJZ- = *,U,oatp = */Loat(ﬁoaiEi) = */Loai(E()atEi), (162)
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10 Sometimes, | will also write 9, for the
partial derivative with respect to time.



where in the second last step we've used Gauss's law. The RHS is clearly nonzero
in general, and so we have a problem: Ampere's law in the magnetostatic limit is
clearly incompatible with local charge conservation, once quantities are allowed
to vary in time. But the result in the last equation tells us how to fix it: we
should replace™

wod; — /Lo(Ji + antEi) . (163)

so that now, the divergence of po(J; + €90:E;) is zero identically, in agreement
with the LHS.

Our new and improved Ampere's law, known as the Ampere-Maxwell
law is

E
VxB= [1,0.] + [1,060887 . (164)

1.9 Summary

Let’s summarize what we've just recapped.

The electric and magnetic fields are governed by the following four equa-
tions, known as Maxwell’s equations:

v E=", V.B=0,
€0

B E

VXEifai VXB:,U,()J+,U,0€08

— 1.
ot’ ot (69

\.

These equations tell you how the two fields, E and B, are sourced by charges
and other fields.

On the other hand, the Lorentz force law tells you how fields act on
charged particles with charge ¢ and velocity v,

F = ¢(E+v xB). (1.66)

or in terms of force per unit volume f on an arbitrary distribution of
charge and current densities p and J,

f=pE+JxB. (1.67)

Together, Maxwell's equations and the Lorentz force law tell you everything you
really need to know about classical electromagnetism! Everything else is built
on top of these equations. You can now solve them, with boundary conditions,
to obtain the behavior of fields and charged particles as a function of space and
time.

End of Lecture: Friday, Jan 23 2026
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this was not how Maxwell arrived at his
correction to Ampere's law historically.



2 Conservation Laws

Momentum (both linear and angular) and energy conservation are not only
extremely important principles in physics, but also incredibly powerful in me-
chanics. In electromagnetism, momentum and energy are also conserved, but
only if we recognize that the fields themselves carry momentum and energy.*
As you have already seen, the electric and magnetic fields do carry energy, but
now we'll also see that they carry momentum too.

2.1 What is a Conservation Law?

But before we look at these conservation laws, let's take a step back and look
at what a conservation law looks like. Let's consider the case of charge con-
servation as a concrete example, although you should keep in mind that vector
quantities can also be conserved. When we say @ is conserved, we mean that
in some system, the total charge doesn't change with time, i.e.

aQ
o =0 (2.1)

This is an example of a global conservation law, which is obtained by integrating
over the entire system.

But the statement of charge conservation is actually stronger than this. Let's
look at any arbitrary volume V' within the system. The total charge @ inside
this volume V' can change with time, but only by charge flow, i.e. currents,
across the boundary of the volume, V. Mathematically, we say that'3

dQ
E__%{;VdA.J’ (2.2)

where the surface integral is simply the total current flowing out of the volume
V. By the divergence theorem, however, we know that

?gvdAJ:/VdBr(VJ). (2.3)

Furthermore, we can write

dQ _d [, = [ 2P
dtfdt/drpf/drat. (2.4)

Putting everything together, we find that for any arbitrary volume V,

Liv.a-o. (2.6)

This is an example of a local conservation law, expressing the idea that any
change in charge at some point must be due to some inflow or outflow from
the surroundings. But you can see that there is nothing particularly special
about charge. Any locally conserved quantity must always have the following
structure: the partial derivative with respect to a density, plus the divergence of
a current density, being equal to zero. Every local conservation law follows this
structure.

14

2 The ultimate reason for why momen-
tum and energy are conserved is the same
as in mechanics: the laws of physics are
invariant under spatial and time transla-
tions, and Noether’s theorem, one of
the most remarkable results in physics,
tells us that such symmetries lead to con-
served quantities that we call momentum
and energy respectively.

13 For this chapter, | will use dA for the
infinitesimal area vector, since the Poynt-
ing vector is almost always written as S.



2.2 Conservation of Energy

We'll begin our study of conservation laws in electromagnetism by examining
energy conservation. In PY405, you had already seen that the electromagnetic
fields carry energy density: for some region of space with electric and magnetic
fields E and B, the energy density ugy; of the fields is

1

1
= -¢E?+ —B?2. 2.7
UEM 260 +2M0 (2.7)

If energy is conserved locally, we would expect to be able to write

OupMm
ot

+V-S=0, (2.8)

for some energy current density S. Let's go ahead and take the derivative of
ugpM in index notation:1#

8UEM

) 1 .
= FE'OiF; + —B'O/B; . 2.
615 €0 8t + 110 at ( 9)

Now, we can use Faraday's law and the Ampere-Maxwell law to rewrite the time
derivatives of the fields:

OurMm ;1 i Rk L o | gk
— o E ik B* — o J; — B (—¢€;;,0'FE
ot 0 Ho€o (€ign Hos) + Ho (e )
1 , , . - ;
"o (E'eijnd’ BY — Bleijd’ BY) — E'J;
= Sk (Bigi BF — BIQYEF) — B, (2.10)
Ho

To make further progress, we're going to do some index relabeling. Remember
that contracted indices can always be renamed, since these indices are just
dummy indices to be summed over anyway. With this in mind, let's take the
term €, B'0? E*: relabeling i — k, k — i, giving

€ B'VEY = ¢, B¥0'E' = —¢;;s BF0'E" (2.11)

where in the last step I've used the fact that €;; = —¢;;1, since we need three
swaps to go from one to the other. With this swap, both terms in the parenthesis
in the expression before this have the same index on E and B, i.e.

ot o
1 o .
- %Gijkaj(ElBk) - E'Ji, (2.12)

where in the last line | have used the product rule. At this point, we can move the
Levi-Civita symbol into the parenthesis (the derivative doesn't act on it, since
it is just a constant), and noting that €, F‘B* = —¢;;, E'B* = —(E x B);,
we finally see that

8uEM 1 J ;
=——0'(ExB),— E'J;, 2.1
b = (B B) B (2.13)
or in vector notation,
ag’iM+V~s+E.J:o, (2.14)
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0(E'E;) = 2E'0,E;, and similarly for
0,B2.



which is known as Poynting’s theorem, with

1
S=—ExB (2.15)
Ho

the Poynting vector.

Let's examine Poynting's theorem a little more closely. In vacuum, with no
currents present, we obtain

OugpMm
ot

+V.-S=0, (vacuum), (2.16)

which precisely as the form of a conservation law, while the Poynting vector S
is clearly playing the role of an energy flux density. But what happens when
there is a medium? What is the meaning of E - J? Recall that the force per
unit volume acting on a distribution of charge in the presence of an EM field is

f=pE+JxB. (2.17)

Taking the dot product of this with v, we get on the LHS a quantity that is
power per unit volume transferred to the charge, while on the RHS, we obtain

v-f=pv-E=J - E, (2.18)

with the term with the cross product vanishing since J = pv is parallel to v.
Clearly then, J - E is the rate of energy density transferred to the charges, and

aumech
=J-E
ot ’

(2.19)

i.e. it is the time derivative of the mechanical energy density of the charges.
Poynting's theorem can therefore be rewritten as

% (UEM + Umech) + V-S =0, (2.20)
which is now a true local conservation law of energy, including both those stored
in the fields and in the mechanical energy of the charges!

By now, you should know how to go from a conservation-law type equation
to a global conservation law, by performing a volume integral, and obtaining an
integral form of Poynting’s theorem. For any arbitrary volume V' with enclosing
surface 0V, we have

d

BT dv (UEM + Umech) = *f dA - S, (221)
dt Jv ov

after applying the divergence theorem. The LHS is simply the rate of change of
the total energy in V, while the RHS is the net rate of energy density flowing
out of the volume through its boundary.

End of Lecture: Monday, Jan 26 2026
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Perhaps one reason why energy conservation is so much less useful in elec-
tromagnetism is that energy flow is extremely unintuitive. Here is one
example illustrating this point: there is a nice discussion in Feynman'’s Lec-
tures on Physics Vol. Il (27.3) on this.

Consider a straight wire with finite conductivity of length L with a circular
cross section of radius a, and a constant current I driven through the wire
by a uniform electric field E inside and parallel to the wire (see Fig. 7).
We know that energy is constantly being dissipated as heat in the resistor;
otherwise, the charges would accelerate through the wire and the current
would not be constant. But where does this energy ultimately come from?
Let's use Poynting’s theorem to find out.

First, the potential difference across this wire is simply V' = EL. The
magnetic field B on the other hand is given by Ampere's law. Choosing a
circular loop at radius a,

I
%dl-B:uolzB:“L, (2.22)

2ma

with the direction of B in the azimuthal direction around the wire, wrapping

counterclockwise around the current. The Poynting vector S then points

radially inward toward the wire, and since the electric and magnetic fields
are orthogonal, it has magnitude

1Vl VI

"~ po L2ra  2mal’

(2.23)
The total energy flux into the wire is then obtained by integrating over the
cylindrical area of the wire,

|20
oral

/dA -S =2mal - VI, (2.24)
which is what you expect from standard circuit theory!
It's great that we recovered the right thing, but the picture is somewhat
unexpected: the energy is flowing in due to the fields within the wire, which
is a highly confusing idea. And yet, this is right: energy is flowing radially
into the wire, and being ultimately converted into heat.

2.3 Scalars, Vectors and Tensors

We now take a little bit of a detour to discuss some mathematical concepts that
we'll find extremely useful when we talking about conservation of momentum,
but then more generally as well when we talk about relativity later on (and
indeed, in all of physics). Please pay attention, because this is the source of a
lot of unnecessary mystery!

In your physics career, virtually everything you have encountered so far can
be labeled as either a scalar or a vector. The handwavy definition you are aware
of is that scalars are quantities with only magnitude, while vectors have both
magnitude and direction. But now, as things get more complicated, we're going
to have to be a bit more precise. Ultimately, scalars and vectors are abstract
objects that one would study in a course on linear algebra, but for our purposes
here, we won't need the full machinery of that.

Let's think about how a physics calculation usually proceeds. We're always
trying to describe some physical situation mathematically, and so invariably the

17
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Figure 7: A cylindrical wire carrying current [
with electric field E parallel to the wire, magnetic
field B in the azimuthal direction, and Poynting
vector S pointing radially inward.



first thing that we do is choose a coordinate system, i.e. a way to assign a
number to every point in space.!®> A typical choice in 3D space that we make
is the Cartesian coordinate system, with three orthogonal axes z, y and z, so
that every point is (x,y, z), and we usually align these axes to make our lives
as easy as possible. But the choice of coordinate system is ultimately arbitrary:
we could have chosen to rotate our axes, or even use a completely different
coordinate system altogether, such as spherical or cylindrical coordinates.

But one thing that we fully expect is that physics does not depend on
the coordinate system you choose, since it's really just an arbitrary way
of labeling things. In fact, we might even expect that the equations de-
scribing the laws of physics should have the same form in any coordinate
system. This is known as the principle of relativity.

You're already aware of this principle to some extent: Newton's laws, for ex-
ample, work in any inertial reference frame moving at constant velocity with
respect to one another. However, we know that it doesn't work in noninertial
frames, and so Newtonian mechanics doesn’t appear compatible with the prin-
ciple of relativity in its full generality. Expecting this principle to be true is a
very powerful idea, and ultimately leads to the formulation of general relativity,
but at the moment, this is too many steps ahead of us. We'll come back to this
when we discuss special relativity.
For now, back to scalars and vectors.

A scalar is a number that always has the same value no matter what
coordinate system you choose.

Examples in 3D Euclidean space include quantities such as charge, mass and
energy.1®17 A vector, on the other hand, is more complicated. As a mental
image, you should think of a vector as an arrow pointing in some direction in
space with some length, that exists before you even talk about coordinates. But
depending on how you choose your coordinate system, clearly the components
of the vector will change. A vector with only an z-component in one Cartesian
coordinate system can clearly have nonzero y or z components in virtually any
other choice of Cartesian coordinate systems, let alone in other non-Cartesian
systems where the components aren’t even z, y and z.

What should be intuitively clear, however, is that under a change of
coordinates, since the vector itself is unchanged (it's just an arrow with
some length pointing in some fixed direction), the components of every
vector in the system must change in the same way under a change of
coordinates.

\

The only type of 3D coordinate transformation that will really be important to
us in this course will be rotations, so let's just specialize to that case for the
rest of this discussion. Rotations are transformations that preserve both lengths
of vectors and angles between vectors. Since lengths and angles are computed
using the dot product, this means that under a rotation, the dot product between
any two vectors must remain unchanged. This is a fact that we will come back
to later.

Under a rotation of the coordinate system, every vector—displacement, ve-
locity, electric field, magnetic field'® etc.—must transform in the same way. For
example, let's consider a rotation about the z-axis by an angle #. Then all

vectors v with components (v!,v% v3) in the original coordinate system, then
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15 and later, in relativity, in spacetime.

16 |n electromagnetism, scalars are always
real, but they can be complex even in
physics, especially in quantum mechan-
ics.

17 Later on, when we talk about relativ-
ity, you'll find that some things that were
scalars in 3D are no longer scalars when
you include relativity. If that's confusing,
don't worry about it for now!

18 Without restricting to rotations, e.g. if
we include reflections, this is actually not
true for magnetic fields, which is why you
might have heard of the statement that
magnetic fields are pseudovectors, but we
won't concern ourselves with this for this
course.



in the rotated coordinate system, the components (v'!, v, v"3) are given by

't cosf sinf O vl
v | = | —sin@® cosf 0] [v?], (2.25)
v’ 0 0 1 v3

Using index notation, we would write this as
V" = R0, (2.26)

where R'; = cosf, Ry = sinf, R?, = —sinf, R%, = cosf, R3; = 1, and
all other components of Rij are zero. Notice that | have been very careful
with putting a space between the upper and lower indices of Rij, with the
first index should denote the row, and the second index denoting the column;
R'; # R?, here, for example, so it would be confusing if we don't put a
space.’® You can check for yourself that the expression above is equivalent to
matrix multiplication. In fact, it is very helpful to remember that the structure
on the RHS is how you would express matrix multiplication in index notation,
with the contracted indices being the second index of the matrix with the vector
index.

Again, the position of the index is actually completely unimportant in 3D
Euclidean space, and it is very common to see all of the indices being written as
lower indices in the literature. However, just so that you get used to the notation
in relativity, coordinate transformations (and indeed any linear transformation
that maps vectors to vectors) should be written with one upper and one lower
index, as |'ve done here.

End of Lecture: Wednesday, Jan 28 2026

One important example of scalars, which is obtained by taking the scalar
product or dot product of two vectors,

A -B=A'B;. (2.27)

As we mentioned earlier, the dot product should be invariant under rotations.
Let’s see how this works out. Under a rotation, we have

A"B] = (R, AV)(R*By) = R;R"ATBy, , (2.28)

where in the last step | have just rearranged the terms. Again, let me remind
you that in index notation, all quantities are simply numbers, and so you can
simply shuffle them around as you like. For the dot product to be invariant, we
must have A""B] = ATB; = 5?AjBk for any vectors A and B, and so it must
be true that all rotations satisfy

RYR}* =6} (2.29)

While this is indeed true, it is more illuminating if we write the first term Rij
in terms of the transpose R”, with

R';=(R")". (2.30)

and so (RT)jiRilC = 5;?, or in matrix notation,

RTR=T, (2.31)
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19 The only exception to this rule is the
Kronecker delta 5; which is symmetric
in its indices, and so we often write it
without a space.



where I is the identity matrix. This shows that RT = R~!, i.e. the transpose
of a rotation matrix is equal to its inverse. These kinds of matrices are called
orthogonal matrices.

In 3D Euclidean space, tensors are objects formed by combining multiple
vectors together. In index notation, they're really not that mysterious: you've
actually already seen many examples of tensors without realizing it! Simply take
two vectors A* and B7, and put them together to form the object T% = A*B7:
this is a tensor.?® We say that T% has rank 2, since it has two indices, with
3x3 = 9 components in 3D space. Taking a derivative of a vector field 9;V7 also
gives a rank-2 tensor. Linear transformations as represented by a matrix are also
rank-2 tensors. You can continue to put vectors together, e.g. T"/* = A'BiC*
to get a rank-3 tensor, and so on.%

In general, the rank-2 tensor components T% £ T7¢ je. the order of the
indices matters, which is why if we want to write them with mixed upper and
lower indices, we need to be careful about their order, i.e. we should be careful
to write T and not T7.?> Rank-2 tensors that do satisfy 7%/ = T are called
symmetric tensors. An example of such a tensor would be the Kronecker delta,
0% because it is symmetric, it is almost invariably written as 5j without spaces,
which is a convention | will use, but not for any other tensor. On the other hand,
rank-2 tensors that satisfy 7% = —TJ% are called antisymmetric tensors.

Like vectors, all tensors transform in the same way under rotations. In
particular, if we look at the tensor formed by two vectors T9 = A'BJ, the
tensor transforms as

T = A"BY = R\ A*R)\B' = R", R, T*". (2.32)
Therefore, unlike a vector, a rank-2 tensor transforms under a rotation by two
factors of Rij, one for each index. This generalizes straightforwardly to tensors
of any rank.

Tensors have a reputation for being very hard to understand, but once you're
comfortable with index notation, they're really not that bad!

2.4 Conservation of Momentum

Based on our expression with Poynting's theorem, we now want to guess what
the local conservation law for momentum should look like. In Poynting's the-
orem, we related the time derivative of the energy density (both in the fields
and in the mechanical energy of the charges) to the divergence of the Poynting
vector, which is the energy flux density. By analogy, we would expect that the
time derivative of the momentum density (both in the fields gy, and in the me-
chanical momentum g, ., of the charges) should be related to the divergence
of some momentum flux density T, i.e.

0
7(@EM + pmech) -V-T=0. (233)

ot

Don't be confused by the negative sign in front of the divergence term: this is
just a convention related to how we define the sign of T later on. We could
have left it as a plus sign, but then T would have ended up with a relative minus
sign compared to the standard convention.

In index notation, g, is a vector with components p&,; for consistency,
the divergence of T must also be a vector, but 9; from the divergence must
contract with an index of T, leaving one index free. The only way this is
possible is if T is a rank-2 tensor, with components T, so that the conservation
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20 Formally, this is called taking the ten-
sor product of two vectors, but in prac-
tice it's nothing more complicated than
just putting them together like this.

21 Once again, the upper and lower po-
sitions do not matter in 3D Euclidean
space, but all the rules of index notation
still apply, and we'll keep the positions
of the indices as they are for consistency,
so that you get used to it for when they
become important in the context of rela-
tivity.

22 A tensor formed from two vectors A*B7
clearly has A’BJ # AJB" in general, for
example.

23 Griffiths uses the notation



of momentum is expressed as

o . . »
52 (9t + Ghneer) — AT =0 (2:34)

While we can certainly obtain the full expression for each of these terms from
Maxwell’s equations and the Lorentz force law, we won't do it in lecture: | think
it is a valuable exercise in index notation, and so I'll leave it to you to try it
out in the problem set. Griffiths 8.2 shows the derivation using vector notation,
which you can use as a guide. Instead, what we'll do here is that I'll simply
state the final result for each of these terms, and discuss physics.

The most straightforward quantity is @’ .., which is the mechanical mo-
mentum density of the charges. We know that the time derivative of momentum
is force, and hence clearly

%Ef:pEJFJxB, (2.35)

where f is the force per unit volume acting on the charges due to the fields,
given by the Lorentz force law.

The momentum density in the electromagnetic fields gog) is less obvious.
You might guess, however, that a momentum density pointing in a particular
direction should be tied to the energy flux density in that direction, i.e. the
Poynting vector, S. In fact, they (perhaps somewhat remarkably) turn out to
be exactly the same, up to pesky €y and pg factors:

QPEM = ,U,Oe()S = 60(E X B) 0 (236)

Hence electromagnetic fields carry momentum as well, just like they carry en-
ergy. The momentum carried by fields must be included in order for momentum
to be conserved overall.

Finally,

T% is known as the Maxwell stress tensor,
1

. T
T = (ElEJ = 5”E2> +
2 Ho

(B’Bj — ;6”32) . (2.37)

This seems somewhat magical, and really the right way to understand where this
comes from is to start from the Lagrangian formulation of electromagnetism,
which is beyond the scope of this course. However, let me try to give you some
physical intuition. First, it should be clear to you that this is indeed a rank-2
tensor: E'EJ and §% are both obviously rank-2 tensors, and similarly for the
B-field terms. You can also check that this tensor is symmetric, i.e. T% = T7°.
Second, it's got a very similar structure to the energy density expression, um,
which is also somewhat remarkable. This and the fact that gy = S/c? are
suggestive of some deeper connection between energy and momentum, which
again you'll see more of when we discuss relativity.

What is the physical meaning of the Maxwell stress tensor? Think about
local charge conservation, shown in Eq. (1.59),

Ip

J—0. 2.
5 TV I=0 (2.38)
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Here, J = pv tells you something about the flow of charge. Similarly, in the
momentum conservation equation, —T"% encodes the flow of the i-th component
of the momentum density in the j-direction.

We can of course rewrite the differential version of the conservation of mo-
mentum into an integral form. Plugging in all of our expressions for the various
terms, we find in index notation

) 9S8’ g
f' + eomo - = 9TV =0, (2.39)

In index notation, the divergence theorem for a vector v* reads

/ d3’l" aﬂ)i = / dAZ Vi, (240)
\%4 ov

and indeed nothing surprising happens for a tensor:

/d%ajT”’:/ dA,; T4 . (2.41)
14 oV

Integrating the conservation equation over volume therefore gives

Fi—l-eo/m%/ d3rsi—/ dA; TY =0. (2.42)
1% oV

Let's take a few interesting limits of these equations. First, in the limit where
fields are static, i.e. O;:E = 0;B = 0, the Poynting vector S = 0, and so the
conservation of momentum reduces to

Fi = / dA; T (static). (2.43)
ov

This equation says that if you have a region containing some charges, you can
also interpret T% as the i-th component of the force per unit area on a small
surface with normal in the j-direction. Concretely, T%% is the x-component of
the force per unit area on a small surface with normal in the z-direction, i.e. what
we would identify as pressure. On the other hand, 7%V is the x-component of
the force per unit area on a small surface with normal in the y-direction, i.e.
what is called shear stress in fluid mechanics, i.e. forces on surface due to fluid
flow parallel to the surface. Since a flow of momentum out from a region will
lead to a change in momentum density in the region, i.e. a force, this makes
sense. The total force on a volume is simply obtained by integrating the stress
tensor over the surface, dotted into the orientation of the surface element.?*

On the other hand, in vacuum with no charges or currents, and so fi =0,
and we are left with

b . g
a (‘LLOGOSZ) — 8jT” =0. (2.44)

This is the momentum conservation law for electromagnetic fields, with —7"
describing how momentum flows out of a certain volume.

25

Consider an infinite parallel-plate capacitor, with the lower plate (at z =
—d/2) carrying surface charge density —o, and the upper plate (at z =
+d/2) carrying surface charge density +o.
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2% Incidentally, this also explains the sign
convention that we adopted in Eq. (2.33).
T is defined such that it tells you about
the force exerted on the volume enclosed,
whereas if we had chosen the plus sign,
we would it to be the force exerted by
the volume on the outside world, which
has a relative minus sign.

25 See previous sidenote about sign con-
ventions.



Let’s work out the Maxwell stress tensor in the region between the plates.
We know that the electric field in such a system is

E=-—%, (2.45)

o
€o

with no magnetic fields present. The Maxwell stress tensor is therefore
ij Armi Lo
TV =¢ | B'E’ — 55 TE | . (2.46)

Let’s consider all elements where i £ j. The Kronecker delta term vanishes
in this case, but so does E*F7, since the only nonzero component of E is
in the z-direction. Therefore, all off-diagonal elements of T% vanish. For
the diagonal elements, we have

T — ¢ <E1E1 _ 1E2> = JL?,
2 260

T2 = ¢, <E2E2 — 1E2> = _ ,
2 260

79 — o (B9E% - Lp2) = + . (2.47)
2 260

To compute the force, use a pillbox volume enclosing some area A with axis
parallel to the z-axis. By symmetry, the force must act along the z-axis,
and so we can simply compute

F3 = f dA; T = f dAsT? . (2.48)

The top of the pillbox is outside the capacitor, and so there is no electric
field on it. For the cylindrical surface of the pillbox, the normal vector is
perpendicular to the z-axis, and so dA3 = 0 there as well. Finally, on the
bottom of the pillbox, the normal vector is pointing in the —2 direction,
and we obtain

2

F3 = _ATS = —AQ%O . (2.49)

The force per unit area on the top plate is therefore

— =3, (2.50)

i.e. the force is pointing downward with magnitude o2 /(2¢p), which is ex-
actly what you would expect from standard electrostatics.

End of Lecture: Friday, Jan 30 2026

2.5 Angular Momentum in Electromagnetism

Just as electromagnetic fields carry linear momentum, they also carry angular

momentum. The angular momentum density of the electromagnetic field is
given by
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bpv =7 X gy = €7 X (E x B), (2.51)

where r is the position vector from the origin. The total angular momentum
stored in the electromagnetic field is obtained by integrating over all space:

Lem = € /dgrr x (ExB). (2.52)

The torque per unit volume exerted by the electromagnetic field on charges

T=rxf=rx(pE+JxB). (2.53)

Integrating this over a volume gives the total electromagnetic torque on the
charges within that volume.?®

Example 2.3

We'll work through a variant of a famous example known as the Feynman
disk paradox. Consider a very long solenoid with radius R with n turns
per unit length and current I. Coaxial with the solenoid are two long
cylindrical, nonconducting shells of length [—one, inside the solenoid at
radius a, carrying a charge +(), uniformly distributed over its surface; the
other, outside the solenoid at radius b, carrying a charge —@), also uniformly
distributed over its surface. Show that if the current is reduced, a torque
is applied on both cylinders. Compute the total angular momentum in
the cylinders if the current goes to zero, and show that the total angular
momentum is conserved.

SOLUTION:

First, let's recall the fields produced in this set-up. The solenoid produces a
magnetic field B = pgnlz inside, but no magnetic field outside. Meanwhile,
the charge distributions produce an electric field

Q/ .
277607“T (2.54)

Ecyl =
in the region between the two cylinders, i.e. for a < r < b. Here, Q/I is
the charge per unit length, and the field points radially inward since the
positively charged cylinder is inside.

If the magnetic field changes with time, then by Faraday’s law, there is an
induced electric field in the azimuthal direction, and that’s going to turn the
cylinders. Specifically, if we choose a loop around each cylinder, Faraday's

law gives
dop
dl-E=——F 2.55
¢ o (255)
where @ is the magnetic flux through the loop. For the inside cylinder at
radius a, we have an electric field of magnitude Ej, in the ¢-direction,

dB adB a dl
o 2 | === il
2raFiy, Ta ; = Ei 5 q 2u0n . (2.56)

On the outside cylinder at radius b, the electric field has magnitude E,
in the ¢-direction again, with

dB R2dB RZ Al
2bE oy = —TR?— =— Egu = =

L )
at 2% dt ap g (257)
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26 You may also have guessed that there
is an angular momentum flux density ten-
sor, similar to the Maxwell stress tensor
for linear momentum, given by €; ;7 T*!,
but we won't discuss this here.

Z

s

©Q
t'ow

~rr|

—
=
o

Figure 8: A solenoid with a current I, with inner
cylinder of radius a, charge +@Q uniformly dis-
tributed, and outer cylinder of radius b, charge
—Q, also uniformly distributed.



The torque on the inner cylinder is therefore

a? dl
in = Ein T~ —7Z 5 2.
7 rxQ 5 Quondtz (2.58)
and on the outer cylinder,
R? dl
Tout =T X (_Q)Eout = +7QM0’I’LEZ. (259)

If the current goes to zero, the total angular momentum of the inner cylinder
is

—a2 a2
Ly, = /dt Tin = TQ,uOnAIQ = 5(;2#071[2, (2.60)
where AT = —1I is the change in the current (final minus initial), and
2 2
s = /dt Tout = %QuonAIZ = —%Quonli. (2.61)

The total angular momentum in the cylinders is therefore
1
L = Liy + Louw = 5(a2 — R Quonlz. (2.62)

Where this angular momentum come from? Well, it must have come from
the electromagnetic fields! Let's compute the angular momentum in fields
initially, before the current decreases. The magnetic field and electric field
both only exist between the inner cylinder and the solenoid, i.e. fora < r <
R. The angular momentum density in this region is

A

ponlep = —%uonli. (2.63)

Q
£ =eor X (Ecy1 X B) = —¢or X Smeclr

Integrating this over the volume between r = a and r = R, we find

Ly = m(R? — a?)l - —%uonli = %(aQ — R®)Quonlz,  (2.64)

which is exactly the angular momentum transferred to the cylinders!
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3 Electromagnetic Waves

In the previous chapter, we learned that electric and magnetic fields carry energy
and momentum. In this chapter, we'll take a much more in-depth look at this
idea, and see how energy and momentum can be transported across space in
the form of electromagnetic waves.

3.1 The Wave Equation

What is a wave? Intuitively, it is some disturbance in the value of some quantity
in space away from some equilibrium value propagating through space. Sound
waves, for example, are propagating disturbances in the pressure and density of
air; waves on a string are propagating disturbances in the displacement of the
string from its equilibrium position.

Let’s think in one dimension for a moment, e.g. consider a string that can
be displaced upward or downward along the z-axis. Give the string a shake at
the origin at ¢ = 0. We can think of a wave as some function f(z,t). When we
shake the string at the origin at ¢t = 0, this creates a disturbance that propagates
down the string, and so at a later time ¢, there is some displacement of the string
at position x far away from the origin. Many functional forms for f(z,t) are
possible, but the perhaps the simplest functional form that looks like what we
think of as a wave is

f(z,t) = f(z —0t), (31)

where f only depends on the combination x — vt, with v being some constant
with units of velocity. For a wave that is given by f(z — vt), the shape of the
wave at ¢t = 0 is given by f(z), and at a later time ¢, the shape of the wave
is given by f(x — vt), i.e. the same shape as before, but shifted to the right
by a distance vt (see Fig. 9). Evidently v is the speed of propagation of the

wave.Z’

Functions of the form f(a — vt) are solutions of a partial differential
equation known as the wave equation:
o?f 1 9%f

o For (3:2)

To see this, let's compute the partial derivatives explicitly. Define u = x — vt,
so that f(z,t) = f(u). Then, by the chain rule,

90 (afowy A (afyou_& oo
02 Or \dudzr) du \du/) dz du2’ '
since Jy/0x = 1. On the other hand,

2 2 2
L 10 (dfony LA ( df\ou_ 1, &
v2 Ot? v2 0t \ du Ot v2 du du /) 0t 02 du? du?

(3.4)

and so clearly the wave equation is satisfied! It should be clear to you as well
that for any two solutions f and g to the wave equation, f+ g is also a solution,
since the wave equation is linear in f (i.e. it doesn't depend on f2, or (9f/0x)?,
etc.).?8

End of Lecture: Monday, Feb 2 2026
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27 You can set v < 0, in which case the
wave propagates to the left instead.
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f j\/\
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Figure 9: An example of a wave of the form

f(z —vt).

28 |n fact, the most general solution to the
1D wave equation is f(z—vt)+g(z+ut),
i.e. a superposition of a wave traveling to
the right and a wave traveling to the left.



The wave equation can be generalized to three dimensions. Instead of waves
propagating along the x-axis, we now consider waves that can propagate in any
direction in 3D space.

The 3D wave equation is given by:

1 0%f
Vif-=—==0 3.5
J -3 =0, (35)
where V2 = 02 /022402 /0y*+0% /02% = 0'0; is the Laplacian operator.
The general solution to the 3D wave equation is:

f(r,t):f(k-r—wt% (36)

where f is an arbitrary function of only k - » — wt, k is the wavevector,
with k& = |k| the wavenumber, and w is the angular frequency. k and
w are constants in space and time, related by the dispersion relation
w/k=wv.

Let’s think a bit about what kind of solution f(k-r—wt) represents. At ¢ = 0, all
points 7 satisfying k - 7 = constant have the same value of f. You can convince
yourself that k-7 = constant describes a plane perpendicular to k, and therefore
f(k - r — wt) describes a wave whose wavefronts (surfaces of constant values
of f) are planes perpendicular to k (see Fig. 10). As ¢ increases, you can see
that these wavefronts move in the direction of k, at a speed along k given by
v =w/k. This is called a plane wave.

Let's verify that this is indeed a solution to the 3D wave equation. Define
u=k-r—wt, so that f = f(u). In index notation, we can write:

u=kir' —wt, (3.7

where repeated indices (one upper, one lower) are summed over. Taking partial
derivatives with respect to the spatial coordinates using the chain rule:

df

ajf = aaju = flkj s (38)

since 9;(k;r") = k;6'; = k;. Taking a second derivative:
O f =0 (f'k;) = [k k; = f'k?, (3.9)
where k? = k7k; = |k|?. Thus the Laplacian is V2f = f"k?.

For the time derivative:
0% f

6f_ /@__ ! 2
o =15 =l oz =1 (3.10)

Substituting into the 3D wave equation and using the dispersion relation w = vk:

1 92 w? v2k?
v2f_ﬁan:f//k_Q_ﬁf//:f//kQ_va//:O_ (3_11)

Thus, f(r,t) = f(k-r — wt) satisfies the 3D wave equation for any arbitrary
function f and any wavevector k, provided that w and k satisfy the dispersion
relation w/k = v.

3.2 Electromagnetic Waves in Vacuum

With all these preliminaries about the wave equation of the way, let's return to
electromagnetism.
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Figure 10: A plane wave has surfaces of constant
phase (wavefronts) that are planes perpendicular
to the wavevector k. All position vectors r point-
ing to the plane satisfy k-r = ¢ for some constant
c.



3.2.1 The Wave Equation from Maxwell’s Equations

It should come as no surprise that what we want to show is that electromagnetic
fields E and B satisfy the wave equation as well. In vacuum (no charges or
currents), Maxwell's equations are:

, , y 0B’ y OE"
Bl = B’ = Uk By = ——— k9 By, = —.
az 0 I 81 O ) € 8] k at ) € 8] k /’[’060 at
(3.12)

To derive the wave equation for E, we take the curl of Faraday's law. We can
of course do this in vector notation (see Griffiths for this), but we'll do this with
index notation here. On the LHS of Faraday's law after taking the curl, the i-th
component of V x (V x E) is:

eijkaj (VXE), = eijkﬁj (€rimO'E™) = eijkeklmajalEm. (3.13)
But we have the identity that we derived in Eq. (1.45):
€T epim = e = 5i09 — 63,16{ . (3.14)
Substituting this identity, we obtain
€ epm0;0'E™ = (8707, — 8% §7)0;0' E™
=0'0;E7 — 0’0, E"
= -079;E", (3.15)
where in the last line, we use Gauss's law in vacuum. On the RHS, we have
instead

—€'789;(0yBy) = —0,(¢7%0; By,)
= —0y(nocd:E") (3.16)

where in the last line we used the Ampere-Maxwell law in vacuum. Comparing
both sides now, we see that

j i 0 i
—836jE = _MOGO@E 5 (317)
or in vector notation,
O’°E
2 _
\Y E_NOGOW —0, (318)

i.e. the electric field satisfies the wave equation in vacuum.

What about the magnetic field? We can do the same procedure, but starting
from the Ampere-Maxwell law instead. Taking the curl of the Ampere-Maxwell
law, the LHS is

eijk(?j (VxB) = eijkaj (lemale)
= (6187, — 01,61)9;0'B™
=0'0;B? — 979, B"
=-079;B", (3.19)
where in the second last line we used Gauss's law for magnetism. On the RHS,
eijkﬁj (o€00tFy) = uoeoat(eijk(“)jEk)
= loeo0s(—0; BY), (3.20)

and so once again in vector notation,
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2

o)
V’B - Hoco 5 = 0, (3.21)

i.e. the magnetic field also satisfies the wave equation in vacuum.
Let's take stock of what just happened:

We have shown that any electric field E and magnetic field B in
vacuum—which must be solutions to Maxwell's equations—must also
satisfy the wave equation.

Note the direction of implication here: Maxwell's equations = wave equation,
but not necessarily the other way around. This means that any solution to
Maxwell’s equations in vacuum is also a solution to the wave equation, but not
all solutions to the wave equation are solutions to Maxwell's equations.

s a

From the wave equation for E and B in vacuum, we can read off the
speed of propagation of electromagnetic waves:

=2.99792458 x 10°ms™ ", (3.22)

v =

Ho€o

which turns out to be precisely the speed of light in vacuum, c.

This may not seem surprising to you anymore, but it is a tremendous discovery,
stated most clearly in this way by James Clerk Maxwell in 1862. Of course, you
as an experienced physics student knows that light is electromagnetic in nature,
but this was certainly not clear for a long time. In the 19th century, g and €q
were simply constants that relate electric and magnetic fields to their sources,
i.e. charges and currents, which had no obvious connection to light. The fact
that 1/,/10€o corresponded to a wave propagation speed, and the fact that
this wave propagation speed was equal to the speed of light strongly suggested,
simply from theoretical arguments, that light was an electromagnetic wave!

3.2.2 Galilean Invariance

Let's take a closer look at Maxwell’s equations in vacuum, and the wave equation
satisfied by E and B. In physics, we build our equations with scalars, vectors
and tensors, because they all transform nicely under a rotation of our coordinate
system. So for example, Gauss's law states that V - E = p/eg, which is true
in Cartesian coordinate system, regardless of how we orient our axes, because
both V - E and p are scalars that every observer agrees on. Similarly, Faraday's
law V x E = —9B/dt is true in any Cartesian coordinate system, because both
sides are vectors: in a new coordinate system that is rotated with respect to the
old one, both sides transform in the same way under the rotation, and so the
equation remains valid. The same is true in Newtonian mechanics: F = ma is
true in any Cartesian coordinate system, because both sides are vectors.

In addition to this though, in Newtonian mechanics, one of things that you
learned was how to change between frames of reference traveling at constant
velocity relative to each other, also known as inertial frames. For example,
you have probably done problems where you go from the lab frame to the
center-of-mass frame of a system of particles. To go between different frames
in Newtonian mechanics, we perform what we call a Galilean transformation,
which simply consists of subtracting out the relative velocity between the two
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frames. Velocities in one frame v/ and in another frame v are related by

v =v+vy, (3.23)
where vq is the constant velocity taking you from one frame relative to the
other. And that's pretty much it! You don’t have to do anything else.

Now, when you perform a Galilean transformation to go from one frame to
another, one of the things you also know is that you can use Newton's laws in any
inertial frame of your choice. So just like Newton's laws are invariant under
rotations, they are also invariant under Galilean transformations. The reason
this is true is that although inertial observers don't agree on the components of
velocity vectors, they all do agree on a, since in aanother frame, the acceleration
a’ is given by

wo A
oAt dt

Vo) =—=a. 3.24
0= (3.24)
That's a neat property, and a powerful one, enabling you to change inertial
frames at will and continue to use Newton’s laws in whatever frame of your
choice.?9 30

End of Lecture: Wednesday, Feb 4 2026

Now, are Maxwell’s equations and the wave equation invariant under Galilean
transformations? You can quickly see that the answer is absolutely not. The
quickest way to see this is to look at the wave equation:

’E

o)
V2E — jipeg—— = 0.

- (3.25)

This says that electric fields (and also magnetic fields) propagate at a speed
v = 1/\/l€o = ¢, which is a constant. But with respect to what? Under
a Galilean transformation, if | am an observer moving at a very large velocity
v along with the electromagnetic wave, | would measure a very different wave
speed than another observer moving in the opposite direction at speed v. But
the wave equation only gives you one unique, constant speed c.

So you can't perform a Galilean transformation into another frame, and con-
tinue using Maxwell's equations, like you did in Newtonian mechanics. In fact,
you should have already realized that Maxwell's equations themselves cannot be
invariant under Galilean transformations. In a frame where a charge density dis-
tribution is stationary, there is only an electric field E produced by the charges,
with B = 0. But go into another frame where the charge density distribution is
moving: the moving charges now look like a current density distribution, which
surely has to source a magnetic field, B’ # 0. Somehow, complicated magnetic
field configurations can appear and disappear as we go from one inertial frame
to another: what could possibly be the transformation rule here? Certainly, it
is not just a matter of transforming velocities. Indeed,

Maxwell’'s equations are not Galilean invariant, even though Newtonian
mechanics is. If there were a frame where Maxwell's equations hold, then
under a Galilean transformation into another frame moving at constant
velocity relative to the first, Maxwell's equations would not hold.

But Maxwell's equations do work very well on Earth, so clearly the Earth is,
or is at least very close to, a frame in which Maxwell's equations hold. For a
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29 Although, if you thought about this
some more, this transformation seems
somewhat unsatisfactory. You probably
already know that scalars are not invari-
ant under Galilean transformations, e.g.
kinetic energy certainly changes from one
inertial frame to another! Also, different
types of vectors transform differently as
well (see the example of acceleration vs.
velocities below). The Galilean transfor-
mation is pretty badly behaved! And if
you had thought about it this way, you
could already see the seeds of its destruc-
tion by Einstein.

30 But you also know that you can't
change into any frame, just inertial ones:
in accelerating frames, for example, New-
ton's laws do not hold, and you can only
make progress by introducing fictitious
forces like centrifugal forces and Coriolis
forces, etc. Trying to understand how we
could write down physical laws that are
true in any frame is the start of the road
to general relativity!



very long time, physicists thought that there indeed was a special frame in which
Maxwell’s equations held, that they called the aether. This was a hypothetical
medium that permeated all of space, in which electromagnetic fields existed,
satisfying Maxwell's equations in the rest frame of the medium, but not in any
other frames. If you're not willing to give up on Galilean invariance, this is really
your best shot.

This was a huge dead end in physics for many years, and the history of it
is absolutely fascinating, and we'll discuss some of it when we reach special
relativity. But when we finally emerged from this confusion, the punchline of
what we learned is as follows:

There is no aether, and Maxwell's equations (and hence also the wave
equation) hold in all inertial frames of reference.

This is because the Galilean transformation turns out not to be the correct way
to relate quantities in different inertial frames.3! A different transformation,
known as the Lorentz transformation, is required instead, one that breaks
Newtonian mechanics for objects traveling close to the speed of light. We'll
come back to this later on.

3.2.3 Sinusoidal Waves

The most basic one-dimensional wave that is a solution to the 1D wave equation
is the sinusoidal wave, i.e. a wave whose functional form is given by

f(z,t) = Acoslk(z — vt) + 9] = Acos[kz — wt + ], (3.26)

where A is the amplitude of the wave, k is the wavenumber, v is the speed
of propagation, and ¢ is a phase. It should be clear to you that this is indeed
a solution to the wave equation, since it is of the form f(z —wvt). We also define
the wavelength X\ as 27 /k, the angular frequency w of the wave as w = kv,
and the frequency v as v = w/(27) = v/A. Fig. 11 shows these quantities and
how they relate to the sine wave; in particular, the phase controls the position
of the maximum of the wave.

The sinusoidal wave defined above with k,w > 0 is a wave traveling to the
right. You can see this by looking at a peak located at z = 2y at t = 0, such
that f(z0,0) = A; as t increases, we see that f(zo + vt,t) = A, since this keeps
the value of z — vt constant, and so after some time ¢ has elapsed, the peak is
now at zg + vt. To get a wave traveling to the left would have functional form

f(z,t) = Acos[kz + wt + 0], (3.27)
or equivalently f(z,t) = Acos[—kz — wt + 4], since
Acos|—kz —wt + 0] = —Acoslkz + wt — 0], (3.28)

as cosine is an even function.
Sinusoidal waves are much more commonly written in terms of complex
exponentials, using Euler's formula,

e = cos@ +isinf, (3.29)
so that we can also write

F(2,t) = Acoslkz — wt + 6] = Re [Ae“kmw] . (3.30)
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31 Indeed, who told us that Galilean trans-
formations were the right thing to do any-
way? It is certainly intuitive, but there
had never been any guarantee that it was
right, and modern physics in the last 120
years has been an exercise in tearing down
our basic physical intuition. Always check
your assumptions!
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Figure 11: A sine wave and its properties.




Because exponentials are generally much easier to manipulate, this is often
preferable (but equivalent!) to working with sines and cosines directly. Further-
more, if we also allow amplitudes to be complex, and define

B = Ae” | (3.31)
every sinusoidal wave can be written as
f(z,1) = Re [Be“’“z—wt)} : (3.32)

with the phase absorbed into the complex amplitude. In practice, we drop the
Re[- - -] and simply write the complex exponential Be'(Fz=t) directly, implicitly
assuming that the physical wave is the real part of this expression. So you can
pretend every sinusoidal wave is of the form B expl[i(kz — wt)], perform all your
calculations with that, and then at the end of the day, simply take the real part
if you want to know the physical value associated with the wave.

Example 3.1

If you don't believe me that complex exponentials are easier, consider taking
the sum of two sinusoidal waves with the same wavenumber &k and frequency
w, but different amplitudes A;, A and phases ¢;, 2. With sines and
cosines, the sum would be:

f(z,t) = Ay cos(kz — wt + 1) + Az cos(kz — wt + d2) . (3.33)

and it's just not very obvious how to proceed (you could of course use
trigonometric identities, but it's going to get messy). On the other hand,
with complex exponentials, we have:

f(Z, t) = A1€i61 ei(sz""t) L A26i52 ei(szwt)
= (Aleiél + AQeiéz) ei(kz—wt) ’ (3.34)

and so the final wave has complex amplitude A5 = A€ + Ase™%2. One
thing that is clear immediately from this is that the sum of two sinusoidal
waves with the same k£ and w is also a sinusoidal wave with the same k and
w, but with a different amplitude and phase; this wasn’t so obvious with
sines and cosines.

In practice, complex exponentials work beautifully when you're adding them
up, or taking derivatives/integrals. But a word of warning: complex exponentials
don’t work out of the box when you're multiplying two waves together, which
can occur when you're computing things like the Poynting vector, S = (E x
B)/uo. This is because why you multiply two complex exponentials together,
the imaginary part of one multiplied by the imaginary part of the other gives a
real contribution, even though only the real part of the wave was physical. We'll
come back to this again.

Why are sinusoidal waves so important? You can show that under very
general conditions, any function that solves the wave equation f(z — vt) can
be written as a superposition (i.e. an integral or sum) of (typically uncountably
many) sinusoidal waves with different amplitudes, wavenumbers (or equivalently
frequencies) and phases. Since the wave equation is linear, you can simply study
the behavior of a sinusoidal waves of a certain wavenumber k. This fundamental
idea is studied in Fourier analysis, which is important in all branches of physics,
but we'll be able to get through this class without it.
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3.2.4 Monochromatic Electromagnetic Plane Waves in Vacuum

We've been thinking about 1D solutions in the previous section, but now we're
going to start thinking about waves of 3D vector fields in 3D space that are
solutions to the wave equation that we derived earlier,

1 62

Again, we're only going to focus on the simplest case, which is a monochro-
matic plane wave, i.e. a wave whose functional form is given by

E(r,t) = Egcos(k-r —wt +6). (3.36)

for some real amplitude vector Eg. Monochromatic just means a wave having
a single frequency/wavenumber. You can check for yourself that this satisfies
the wave equation as before. Now, it should come as no surprise to you that
we prefer to work with complex exponentials, and so you'll never see a sine or a
cosine, but instead only

E(r,t) = Egelkr—t) (3.37)

where it is important to remember that now Eq is a complex, constant vector,
encoding both the amplitude and phase of the wave. Now, even though |'ve
only written down an electric field monochromatic plane wave, Maxwell's equa-
tions already tell us what the corresponding magnetic field must be, and this is
generally the case: Maxwell's equations do not allow electric fields to propagate
willy-nilly without also producing a corresponding magnetic field!

Let's take a look at what Maxwell's equations tell us about the B-field if
there is a monochromatic plane wave E-field as above, and let's stick to the
simplest case of propagation in vacuum, so no charges or currents. Applying
Gauss's law, we find (using index notation and proceeding slowly)

V-E = Ejd;e’'*'ri—w
= By M =0, li(kir; — wt)]
= Bt (Wit dij
= Bkl (K i)
=1k -E
_o, (3.38)

Let’s define a the unit vector i that points in the direction of the electric field,
ie.

E( = Eyhe!kr—t) (3.39)

We call i1 the polarization direction of the wave.
where in the last line we used Gauss's law V - E = 0 in the absence of
charges.3? This tells us the first important point:

7~

For a monochromatic plane wave in vacuum, we have
k-E=0, (3.40)

i.e. the electric field is always orthogonal to the direction of propagation
of the wave.
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End of Lecture: Friday, Feb 6 2026

Next, let's look at Faraday's law:

(V x B); = 3 E§ 07 11=0)
= ’L.EijkEéck'jei(klm’iww
= Z(k X E)z
_0B;

--5, (3.41)

where |'ve just used the result from above to skip a few steps, and then applied
Faraday's law in the last line.3® This shows that the solution has to be3

B = Bye!(kr—«b) (3.42)

with
_ 9B
ot

= iwBge! KT = jk x Egelkrwt) (3.43)

which means that By = Ey(k x n)/c.

To summarize, a monochromatic electromagnetic plane wave in vacuum
has the form

E(ht) — Eoei(kr—wt) _ Eoflei(k‘r_wt) ,

Ey

IA{X A\ i(k-r—wt)
0 x a)eiter=en

(3.44)

L 1. :
B(r,t) = -k x E = —(k x Eg)e'®7—t) =
@] C

Furthermore, the relation between E, B and k is such that

For a monochromatic electromagnetic plane wave in vacuum, we must
have

k-E=k-B=0. (3.45)
Such waves are known as transverse waves, with the perturbations
(electric and magnetic fields) being in a direction perpendicular to the
wavevector. Furthermore, E-B = 0, i.e. the E and B fields are orthog-
onal to each other.

If the wave is traveling along the z-direction, and we align polarization vector
along the x-axis, then the expressions simplify to

B= @yei(kz—wt) )
C

E = Egxe'F==«t) (3.46)

Fig. 12 shows an illustration of what this wave looks like. Notice that the

solution has E and B in phase as well.
3.2.5 The Electromagnetic Spectrum

Electromagnetic waves are one of the most well-studied physical phenomena in
all of physics, and they span an enormous range of frequencies and wavelengths.
The entire range of electromagnetic waves is known as the electromagnetic
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33 You will notice that for plane waves, |
could have gotten the answer of V- and
V x by simply replacing V with ik, which
is a very useful shortcut.

34 Technically, we have only shown that
B = Boexp(i(k - r — wt)) + f(r), but
the fact that B also has to satisfy its own
wave equation and the other Maxwell's
equations would show that f(7) = 0.

Figure 12: A plane electromagnetic wave moving
in the z-direction. For a general wavevector Kk,
the direction of wave propagation will be k, with
the planes of constant field vectors orthogonal to
k.



Wavelength A\ (m)  Frequency v (GHz) Photon Energy (eV) Name

Applications

>1 < 0.3 <10 Radio waves
1073 -1 0.3 — 300 107%-10"3 Microwaves
7Tx1077-1072 300 — 4 x 10° 1073 -2 Infrared
4%x1077-7x1077  4x10°-8x10° 2-3 Visible light
1078 -4x107"7 8 x 10° — 3 x 107 3-100 Ultraviolet
107" - 1078 3x 107 -3 x 10%° 100 - 10° X-rays
<1071 > 3 x 10%° > 10° Gamma rays

AM/FM radio, TV broadcasting
Radar, WiFi, microwave ovens
Thermal imaging, remote controls
Human vision, optical microscopy
Sterilization, fluorescence

Medical imaging, crystallography
Cancer treatment, nuclear physics

Table 1: The electromagnetic spectrum.

spectrum. Table 1 shows how we broadly categorize different frequency ranges
of EM waves, although the boundaries are not really sharply defined. There are
also more specialized names for sub-bands (including, of course, the colors of
the rainbow!), most of which I'm unfortunately not very familiar with myself.
Note that I've also listed the photon energy associated with these waves. From
quantum mechanics, you know that electromagnetic waves can be thought of as
comprising quantized excitations of the electromagnetic field, each with energy
given by E = hv, where h is Planck’s constant. There are, of course, no such
thing as photons in classical electromagnetism, but being familiar with these
energies is so important in many fields of physics that it would feel somewhat
ridiculous not to put it down in this table. We'll never discuss photons again
in this class, but this is another reminder that you're studying a classical field
theory that is still not quite the full story.

3.2.6 Energy and Momentum

Electromagnetic waves in vacuum also carry energy and momentum, as you
might expect. In your problem set, you will work out the energy density, Poynting
vector and momentum density of monochromatic plane waves in vacuum.

First, let me just write down the electric and magnetic fields, but using real
notation here: you should have gone through the same exercise using complex
notation on the problem set, and you can go through how to multiply complex
exponentials in Appendix A. We have

E = Epncos(k - r —wt+6), (3.47)
B= @(f( x n)cos(k - T —wt +4). (3.48)
c

The energy density of the wave is

1 1
u= -¢E? + —B?
2 2410
= 160E3—|— LEg cos®(k -7 — wt + )
2 2,[1/()0

=eoFg cos?* (k-7 —wt +9). (3.49)
Not very surprisingly, the EM wave has an energy density that oscillates in space
and time (and of course, it is always positive).

Next up, we have the Poynting vector, which gives the energy flux (energy
per unit area per unit time) of the wave:

ExB
Ho
= egcE2k cos?(k - r — wt + 0)
= cuk. (3.50)

S =
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where I've computed the cross product of the normal vectors just by the right-
hand rule, and used the fact that 1/(uoc) = €gc. One way to understand this
expression is that the electromagnetic wave is constantly propagating the energy
density in the k-direction at speed ¢, and so the energy flux is just the energy
density multiplied by the speed of propagation.

Finally, we have the momentum density of the wave, which is given by (see
Eq. (2.36))

U
© = /L()Gos = Ek (351)

One interesting consequence of this is that u = |g|c, i.e. the energy density of
the wave is equal to the magnitude of the momentum density multiplied by the
speed of light. More on this later.

End of Lecture: Monday, Feb 9 2026

All of these quantities are oscillatory, but the frequency at which these oscil-
lations proceed is very large (or, equivalently, the wavelength over which these
quantities change is very small). If you're trying to measure these quantities in
an experiment, unless your detector has a very high time resolution, or equiv-
alently a very small spatial resolution, you will only be able to measure the
time-averaged or space-averaged values of these quantities. So let’'s compute
the time-average of the energy density, which we'll denote (u). This is defined
as integrating u over one period of the wave T', and then dividing that result by
T:

1 /7
(u)y = T/ dt e B2 cos®(k - v — wt + )
0

T
= %GQES /0 dt % (cos2(k -r —wi)] +1) . (3.52)

The first integral is zero, since we are integrating a cosine with angular frequency
2w over two periods (or you can just work it out to convince yourself that this
is zero). The second integral just gives T/2, and so we have

(u) = %GOES. (3.53)

You can also show that this is equivalently

L oo

(u) = QTLOBO . (3.54)

With this result, since all the quantities above are proportional,

1 N
(S) = §ceoE§k
1

() = 5 0Bk (3.55)

The quantity |[(S)| is also known as the intensity of the wave, and is often
denoted I, which is the average power transmitted per unit area, with Sl units
Wm~2.
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3.3 Electromagnetic Waves in Matter

We've now seen that electromagnetic waves can propagate in vacuum with speed
c = 1/\/jo€g. We've taken a look at monochromatic plane waves, found that
they are transverse, with electric and magnetic fields orthogonal to each other
as well. We'll now move on to studying how electromagnetic waves propagate
in other media, i.e. when there are materials present. This is going to get really
interesting, because now we can look at waves passing from one medium to
another, which leads to very rich physics.

3.3.1 Linear Media

We'll first consider linear media, where the polarization P and magnetization M
are linearly related to the electric and magnetic fields, respectively. In this case,
the fields D and H are proportional to E and B, with D = ¢E and B = H.
Let me remind you that Maxwell's equations in a medium is given by:

V-D=py, V-B =0,
0B oD
VXE=—— VxH=Js+ ——.
. at 8 U
Without free charges and currents, we have py = 0 and Jy = 0. Writing
everything in terms of E and B, Ampere-Maxwell's law becomes

(3.56)

B OE JE
— —e— B = ne— 57
VXM eat:>V>< pegr s (3.57)
with remaining laws being
B
V.E=0, VXEZ—%, V.B=0. (3.58)

Comparing this with Maxwell's equations in vacuum, we see that the only dif-
ference is that pgeg — pe, with everything else being the same. In particular,
the fields still satisfy a wave equation:

SN AN
(v o )E=0; (3.59)

and likewise for B. This is pretty remarkable! Remember we said that waves
satisfying the wave equation preserve their shape as they propagate. Here, we
see that in linear media, waves also satisfy the wave equation, and so they
also preserve their shape as they propagate. This means that waves don't get
distorted when they propagate through linear media, and is responsible for the
phenomenon of transparency.

The wave speed in a linear medium is given by
v=—, (3.60)

which in linear media should satisfy v < ¢. We define the refractive
index of the medium as n = ¢/v, given by

LLE
Ho€o

(3.61)

Most of the time for linear materials, ;1 = pip, and so the refractive index is just
n = y/€/eg. Typical values of the refractive index for common linear materials
are n =~ 1.3 for water, n =~ 1.5 for glass, and n =~ 2.4 for diamond.
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For other expressions, you can simply take the expressions for vacuum, and
replace eg — €, o — i, and ¢ — v.

3.3.2 Reflection and Transmission at Normal Incidence

What happens when an electromagnetic wave traveling in one medium hits the
boundary of another medium? You've already seen the idea of reflection and
refraction in earlier classes, but now that we have Maxwell's equations under
our belt, let's take a close look at how this works. Let's start by looking at
normal incidence, where the wave is incident on the boundary along the normal
direction. Again, we'll look only at sinusoidal waves, since any arbitrary wave
can be thought of as a superposition of sinusoidal waves.

Before we dive in, let me remind you how fields behave at the boundary
between two linear media with no free charges (which is what we'll assume for
the rest of this chapter):3®

The boundary conditions at the interface between two media that set
how E and B are determined on either side of the boundary are given
by

e Eif =D; =Dy = &E;5 B} = By,
1

E! :Eg’ M1

1
B! =H|=H)= B}, (362
K2
where | and || denote the components of the fields perpendicular and
parallel to the boundary, respectively.

\. y

We'll be using this a lot.

First, let’s set up our coordinate system: the set-up is shown in Fig. 13. Let's
have an incident wave traveling in the z-direction, and let's have the boundary
between the two media be the zy-plane at z = 0, with medium 1 occupying the
region z < 0 and medium 2 occupying the region z > 0. Let the polarization
vector be in the z-direction, so that the magnetic field is in the y-direction.
Explicitly, for the incident wave,

E](Z, t) = E()’[ei(klziwlt)f(

B (2,1) = L0 gilkrz—wrty (3.63)
U1
with the velocity v being the velocity of wave in medium 1, and so wy/k; = v;.
Let me remind you that Ej ; is complex, and includes the phase of the sinusoidal
wave.

What happens when the incident wave hits the boundary at z = 07 Some
of the wave will be reflected back into medium 1, and some of the wave will be
transmitted into medium 2. The transmitted wave has to travel in the same
direction as the incident wave, just by symmetry, so let’s write it as

Er(z,t) = Eore'Fra—wrtix

Br(z,t) = @e“’m-wﬂ)y, (3.64)

V2
where vy is the velocity of the wave in medium 2, and so wr/kpr = vo. How did
| know that the transmitted wave has the same polarization? Well, check the
boundary condition on the parallel component of the electric field: Eﬂ = E&
which means that the transmitted wave must have the same polarization as
the incident wave. This also means that both B-fields are in the y direction

38

35 If this is not familiar with you, please

go back and review this in PY405. They
can be derived by applying Maxwell's
equations in an infinitesimal pillbox or
loop that straddles the boundary, and
then taking the limit as the size of the
pillbox or loop goes to zero.



as well. In general, there will also be a reflected wave, which travels in the
—7Z-direction, and so we can write it as

]‘ER(Z7 t) = E())Rei(_kRz_th))A(

Br(z,t) = —?e“—’w—wﬂy. (3.65)
1
Again, the reflected wave has to have the same polarization, otherwise the
boundary conditions cannot be satisfied. Notice the minus sign on the magnetic
field: this is because the reflected wave is traveling in the —Z-direction, and so
the Poynting vector (E x B)/ug must point in the —2-direction, which means
that B has to point in the —y-direction.

End of Lecture: Wednesday, Feb 11 2026

We are now going to find the relationship between the wavenumbers, fre-
quencies and amplitudes of the incident, transmitted and reflected waves by
applying the boundary conditions at z = 0. Let's first set z = 0 and see what's
going on. All of the E-fields are in the X-direction, and given the boundary
condition on Ej,

EO,Te_int = EO Ie_iwIt + EO_,Re_i“Rt . (366)

s

This has to be true at all t! The only way this could be is if wpr = w; = wg,
which means that the transmitted and reflected waves have the same frequency
as the incident wave. This is an important result:

The frequency of the incident, transmitted and reflected wave is constant
across the interface.

Furthermore, we must also have
Eor = FEo 1+ Eor- (3.67)
All right, let's take stock of where we are now. We have
E;(z,t) = By ™12 0%,
Er(z,1) = Eore'"2*20%,
Er(z,t) = By ge' "Rzt (3.68)

where | have defined k1 = w/v1 and ko = w/vs, the wavenumbers in medium
1 and medium 2 respectively.

Notice that

k1 V2

— == 3.69

e =2, (3.69)
which is the relation between wavenumbers across the boundary of two
different media. Alternatively,

A1 U1
A2 V2

; (3.70)

with a shorter wavelength in the medium with a smaller wave speed.
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For the magnetic fields,

U1
E .
Br(z,t) = —2reithesely,
U
E .
Br(z,t) = —%Re“*kﬂ*wt)y, (3.71)
1

with the boundary condition Eq. (3.67) still holding.
We've used the boundary condition for E|; what about for B ? That gives

1 [ FE E 11
il (W _ M) = ——FEr, (3.72)
M1 U1 U1 H2 U2
or
Eor—For="2"Er. (3.73)
H2 V2

So we've got two equations, this one and Eq. (3.67). We can therefore relate
Eo.r and Ey 1 to Ey ;. Defining

o= _ AT (3.74)
H2V2 M2 11
We find
11—« 2
Eogpr= E FEor=(—|FEos. 3.75
0,R <1+a> 0,15 0,7 <1+a> 0,1 (3.75)

Usually, in linear materials, we have uy & us & p1g, and so a & ny/n;.
In this case, the above expressions simplify to

— 2
Eo.r = <02 v1> Eor, Eor = < 2 )Eo,l, (3.76)

Vg + U1 vy + U1

or in terms of the refractive indices,

- 2
Eor = (nl n2> Eyr, Eor= ( et >E071. (3.77)

ni + ng ny + N2

Let me remind you that the amplitudes above are all complex, which means
that it represents both the real amplitude and the phase as well. You can see
that since 2vs2/(ve + v1) is just a real number, we see that the transmitted
wave is in phase with the incident wave. Explicitly, if we write Fy = Aseidr,
Eor= Ape®r and Eyr = Ape®T | then we must have

ATeiéT _( 2'02 )Aleiéf’ (378)
Vg + U1
which only works if §7 = d;.

On the other hand, if vy > vy, then the reflected and incident waves are in
phase as well, while they are m-out of phase if vy < w1, since a negative sign
corresponds to —1 = '™,

Let’s just write down the relationships between the real amplitudes; this is
just

2711
E Eor = FEor. 3.79
wre B = () o (379)
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The intensity of a wave in a linear medium is given by (see Eq. (3.55))

1
I= §UEE37 (3.80)

and so the intensity of the incident, transmitted and reflected wave are related
in the following way:

Ir _ A%

I, Az’

IT UQEQA%

- = . 3.81
II U1€1A§ ( )

These ratios tell you about how much energy gets reflected or transmitted
at a boundary. The ratio of the reflected to incident intensity is called
the reflection coefficient,

Ir
Iy

2
ny —n2

ny + no

R

(3.82)

and the ratio of the transmitted to incident intensity is called the trans-

mission coefficient,
2
T  U€ 2nyq
I V1€1 \ M1 + N2

2
ni n% 2n,
ne ni \ni1 + no
47?,1712

=t (3.83)

~

T

(Note again that these formulas all assume p1 & po = o). By energy
conservation, we must have

R+T=1. (3.84)

Let's take some limiting cases to see if these formulas make sense. If n; =
ng, then as far as the electromagnetic wave is concerned, the two media are the
same. In that case, there should be no reflection, and indeed we get R = 0 and
T = 1. On the other hand, if no — oo, this is very much the same situation as
a light string attached to a very heavy rope: the wave gets almost completely
reflected, with

4an
Eor =~ —FEo 1, Eor ~ T;EO,I~ (3.85)

You can see that the reflected wave is completely out-of-phase, with a very small
amplitude of transmission.

There was a lot of physics that just went by, so let’s just recap the main
points:

1. Every medium can be characterized by € and pu, which leads to a different
wave speed v = 1/,/u€, and a refractive index n = ¢/v.

2. The frequency of the EM wave is constant across the boundary of two
media.

3. The wavenumber or wavelength is is related by A1 /s = v /vs.
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4. Using the boundary conditions for Maxwell's equations, you can com-
pute the relation between the amplitudes of the incident, reflected and
transmitted wave, which then gives you the reflection and transmission
coefficients.

5. The transmitted wave is in phase with the incident wave, while the re-
flected wave is in phase with the incident wave if vo > vy, and m-out of
phase if vo < 1.

End of Lecture: Friday, Feb 13 2026

A  Multiplying Complex Exponentials

Throughout these notes, we use complex exponentials to represent sinusoidal
waves, writing e.g. E = Eqe’(® ™=« with the understanding that the physical
field is the real part of this expression. This works perfectly for addition, differ-
entiation and integration, since all of these operations commute with taking the
real part. However, as we mentioned earlier, things are not so simple when we
need to multiply two such quantities together, which happens when computing
things like the energy density u oc E? or the Poynting vector S o E x B. This
appendix explains the issue and how to handle it correctly.

A.1 The Problem with Multiplying Complex Exponentials

Let’s start with a simple example. Consider two physical quantities represented
by complex exponentials:

f(t) =Re [Ae_i“t] , g(t) = Re [Be_i“t} , (A.1)

where A and B are complex amplitudes encoding both the real amplitude and
the phase. Here I'm suppressing the spatial dependence for simplicity. The
physical product of these two quantities is

f(t)g(t) = Re [Ae™™'] - Re [Be ™!] . (A.2)

You might be tempted to just multiply the two complex exponentials directly,
giving ABe~2™! and then take the real part. But this is wrong! The issue is
that taking the real part does not commute with multiplication:

Re[z1] - Re[z2] # Relz1 - 22] . (A.3)

To see why, write z; = aj +ib; and z2 = as+1iby. Then Re[z1]-Re[z2] = ajas,
while Re[z122] = ajas — b1ba. When you multiply two complex numbers, the
product of the imaginary parts gives a real contribution —b;b> that has no
business being in the physical product. This is exactly the issue we warned
about when we first introduced complex exponentials.
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A.2 The Correct Way to Multiply

Let f and g be sinusoidal functions, with F' and G being their complex expo-
nential representation such that Re(F) = f and likewise Re(G) = ¢g. How do
we correctly multiply two complex exponentials F' and G so that the real part
of the result is f - g? Suppose F' = f +if’ and G = g+ ig/, with f’ and ¢’
being real. Remember that the imaginary part is unphysical, and so the only
part of F' and G that we care about is the real part. Notice that we can write
g = (G 4+ G*)/2. With that, we can see that

Re [F % (G+G*)] =Re[(f+if’)-g]
= fg, (A.4)

which is the the correct physical product. Hence, we have the following:

For real functions f and g represented by the complex exponentials F'
and G, the product f - g can be obtained by taking performing the
following operation on F' and G:

1
f-g= §F(G+G*), (A.5)
where on the right-hand side we must remember to take the real part at

the end in order for the two sides to truly be equal, but physicists are
usually very lazy and just write it as shown above.

A.3 Time Averages

In many situations, we don't need the instantaneous value of the product, but
rather the time-averaged value. As a reminder, the time average of a quantity
h(t) over one period T' = 27 /w is defined as

(h) = % /0 dth(t). (A6)

Let’s start by collecting some useful results. First, the time average of any
sinusoidal function at frequency w (or any nonzero multiple of w) over one full
period is zero:

(cos(nwt + ¢)) = (sin(nwt + ¢)) =0, n=123,... (A7)

for any phase ¢. In fact, this result follows from the definition of a period:
integrating any sinusoid over one complete cycle gives zero.

From this, we can immediately derive the average of cos® and sin?. Using
the double-angle formula cos? 6 = (1 + cos 26)/2, we get
1 2wt + 2 1
<COS2(th—|—¢)> _ < +COS(2(U + ¢>> _ 5’ (A8)

since the cos(2wt+2¢) term averages to zero. By a similar argument, (sin®(wt+
@)) =1/2 as well.

We'll now prove a very useful formula for the time average of the product
of two sinusoidal quantities represented by complex exponentials at the same
frequency. Consider two real, sinusoidal functions f(t) and g(t) represented by
the complex exponentials F'(t) = Ae=%*! and G(t) = Be~ ™!, where A and B
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are complex amplitudes that are time-independent. Then the time-average of
f - gis given by (using Eq. (A.5))

(f-g>:<F~;(G+G*)>:;<F-G>+;(F-G*>. (A.9)

Notice that F' - G = ABe 2™ which is a sinusoid at frequency 2w, and so
(F-G) = 0.

The time-average of the product of two sinusoidal functions represented
by complex exponentials at the same frequency is given by

(-9 = 5(F -G, (A10)

where once again we have a complex exponential on the right-hand side,
and we must remember to take the real part at the end in order for the
two sides to truly be equal, although the notation shown here is very
common.

Example A.1

Let’s use this to compute the time-averaged Poynting vector of a monochro-
matic plane wave in vacuum. Recall that the electric and magnetic fields
of such a wave are given by

E(r,t) = Eghe 71

Eqy ~ )
B(r,t) = ?O(k x fi)e!tkr—wt) (A.11)

where Fj is the complex amplitude (encoding both the real amplitude and
the phase), 1 is the polarization direction, and k is the direction of propa-
gation. The Poynting vector is S = (E x B)/ug, which involves a product
of two sinusoidal quantities at the same frequency. Using Eq. (A.10), the
time-averaged Poynting vector is

()= —

1
m (E x B) = 2o B0 X Bi (A12)

where Eg = Eon and By = (Eo/c)(k x 1) are the complex amplitudes
of the electric and magnetic fields respectively. Note again that the real
part needs to be taken in the final expression, but nobody ever writes it
explicitly. Computing the cross product, we get

*

Er .
Eo x B} = Eoh x Co(kxﬁ)

Eyl? -
_BP

, (A.13)
where we simply have to remember that k, f, and k x 1 form a right-handed
orthonormal basis. This expression is already real, so we finally obtain

_ B 1

= k = —egc|Eo|?k A.14
2/-’/00 2600| 0| ; ( )

(S)

where in the last step | used 1/(puoc) = €gc. This is consistent with
Eq. (3.55), where | used the real amplitude instead, which is |Ep|. If
this is confusing, note that

Eoﬁei(k~1‘—wt) — |E0 |ﬁei(k~r—wt+6) (A15)
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for the phase § with Ey = |Eg|e?®, and taking the real part of this gives
|Ep|frcos(k - r — wt + §), which is a sinusoidal wave with real amplitude
|Eo|.

Note that the time-averaging of a product works for a cross product too.
You can see this by using index notation to write (E x B),; = €ijk L B, so that

((E x B);) = (e;ju B B¥)
= eijr{E/B")
1 .

%E x B*. (A.16)

45



	Preamble, Recap and Index Notation
	Integral Form of Gauss's Law
	Divergence Theorem and the Differential Form of Gauss's Law
	Index Notation Part I: Dot Products
	Ampere's Law in Magnetostatics, Stokes' Theorem and the Lorentz Force Law
	Index Notation Part II: Cross Products
	Index Notation Part III: Triple Products
	Gauss's Law for Magnetism and Faraday's Law
	Charge Conservation and the Ampere-Maxwell Law
	Summary

	Conservation Laws
	What is a Conservation Law?
	Conservation of Energy
	Scalars, Vectors and Tensors
	Conservation of Momentum
	Angular Momentum in Electromagnetism

	Electromagnetic Waves
	The Wave Equation
	Electromagnetic Waves in Vacuum
	The Wave Equation from Maxwell's Equations
	Galilean Invariance
	Sinusoidal Waves
	Monochromatic Electromagnetic Plane Waves in Vacuum
	The Electromagnetic Spectrum
	Energy and Momentum

	Electromagnetic Waves in Matter
	Linear Media
	Reflection and Transmission at Normal Incidence


	Multiplying Complex Exponentials
	The Problem with Multiplying Complex Exponentials
	The Correct Way to Multiply
	Time Averages


