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1 Linear Algebra

References: Stone & Goldbart (SG) Chapter 10, Appendix A; Carroll Chapter 2

At this point in your physics career, you've gained a lot of intuition about
R™, objects like vectors which live in the space, and their transformations. You
probably also have at least some intuition about Minkowski space. We're now
going to review these concepts more formally. This will better equip us to
understand more general spaces in physics, such as Minkowski space and curved
spacetime, as well as more general structures on such spaces, such as tensors.

1.1 A Review of Linear Algebra

The study of spaces like R™ falls under the subject of linear algebra. While a
course in mathematical physics might feel a little incomplete without covering
this topic in detail, linear algebra is generally well-covered in undergraduate
curricula. We'll content ourselves with a lightning review of some key facts.

1.1.1 Vector spaces and inner products

So what are the structures of R™ that we take for granted? First, the funda-
mental quantities that we deal with in real space are vectors. A collection of
objects that live in real space is simply a set, but the interesting thing about real
space is that there are relations between the objects in the space. In fact, real
space is an example of a vector space, a structure which is defined as follows:

A vector space V over a field F is a set equipped with two operations:
a binary operation called vector addition which assigns to each pair of
elements Z, i € V a third element denoted ¥ + ¥, and scalar multipli-
cation which assigns to an element © € V and A € F a new element
AZ € V. There is also a distinguished element 0 € V such that the
follow axioms are obeyed:

1. Vector addition is commutative:  + § = i + &;
2. Vector addition is associative: (£+¢)+ 2 =2+ (¥ + 2);
3. Additive identity: 0+ & = &;

4. Existence of an additive inverse: for any & € V, there is an element
—Z € V such that Z + (—Z) = 0;

5. Scalar distributive law: A(Z+¢) = A+ Ay, as well as (A+p)Z =
AT + pu;

6. Scalar multiplication is associative: (Ap)Z = A(u), and

7. Multiplicative identity: 17 = Z.

A lot of that just seems very natural, and so it might seem like a lot of useless
abstraction. But the point is to be clear about what a vector in the abstract
actually is, so that when we're in much less familiar settings, these formal struc-
tures are going to help us cut through the confusion. Furthermore, we can study
properties of all vector spaces that would apply equally well to R™ as it does to
any other vector space.

Here, you can see that R"™ is a vector space over the field R. However, you're
also familiar with vector spaces over the complex numbers C: one example is
the Hilbert space, which underpins quantum mechanics. The states of a system



are described as vectors |¢)) in a Hilbert space. The results of linear algebra
apply equally well to both R™ and Hilbert spaces.

In addition to being able to add vectors, or multiply vectors by scalars,
another important thing you can do in R™ is talk about distances: you can take
the dot product or inner product of a vector with itself to talk about length, or
take the inner product of two different vectors and talk about angles. Formally,
vector spaces with this additional structure are called inner product spaces.
Inner product spaces are defined as follows:!

’

An inner product space is a vector space V over a field F, together
with an inner product, which is a map

(,): VXV =T, (1.1)
that satisfies the following properties for all #,%,Z € V and A\, u € F:

1. Conjugate symmetry: (Z,9) = (¥, Z)*, where x denotes complex
conjugation. If IF is real, then this just means that the inner prod-
uct should be symmetric;

2. Linearity in the second argument, i.e. (Z, A\ + u2) = MZ,9) +
w(Z, Z). Note that this together with conjugate symmetry implies
that (A\Z + py, 2) = N*(Z, Z) + p* (¥, Z). The inner product is only
linear in both arguments when F = R, and

3. Nondegenerate, i.e. if (Z,4) = 0 for all §, then Z = 0.

The inner product on R” is the dot product; in Hilbert space, it is denoted
(¢'1); in Minkowski space, we have the metric tensor. We'll go into a lot more
detail on this in just a bit.

The last thing that we'll talk about are linear transformations (also known
as linear operators or linear maps), which are functions that take us between
vector spaces. Let V and W be vector spaces with dimensions n and m respec-
tively; A: V — W is a linear transformation if

ANE + i) = MA(@) + nA() (12)

1.1.2 Bases and components

At this point, the vectors on a vector space are still abstract objects. In order to
make contact with our usual representation of vectors as a column of numbers,
we need to define a basis for the vector space. This is something that you've
probably seen in linear algebra, but we'll state some facts and definitions that
all are somewhat intuitive:

1. A set of vectors {€1,€,---,€,} is linearly dependent if there exist
AL oo A" € T, written as M for g =1,--- ,n, not all zero, such that

Me + X% +---\"E, =0. (1.3)

2. If it is not linearly dependent, a set of vectors {é7, &, - -
independent. For a linearly independent set, the relation

, @} is linearly

AE + A28+ \E, =0 (1.4)

holds only if A\l = ... = A" = 0.

! There are a few differences here com-
pared to the usual definition in mathe-
matics. First, in mathematics, it is com-
mon to have linearity apply to the first
argument. This is of course is entirely
equivalent. We use this definition to con-
form with our usual intuition in braket no-
tation. Second, the inner product space
is usually defined as having a positive def-
inite inner product; but this unfortunately
excludes Minkowski space, which is more
properly classified as a pseudo-inner prod-
uct. We don't really care about these dif-
ferences in physics though.



3. A set of vectors {€1, ¢, ,€,} is said to span V if for any & € V, there
are numbers x* such that & can be written (not necessarily uniquely) as

Z=a'e, + 2% + -+ "€, . (1.5)
A vector space is finite dimensional if a finite spanning set exists.

4. A set of vectors {€1, €5, - ,€,} is a basis if it is a maximally linearly in-
dependent set, i.e. introducing any additional vector makes the set linearly
dependent. Equivalently, a basis is a minimal spanning set, i.e. deleting
any of the €; destroys the spanning property.

5. If {€1,€2,--- ,€,} is a basis, then any & € V' can be written
Z=ate + 226 + - +2"€,, (1.6)

where the z#, known as the components of the vector with respect to
this basis, are unique in that two vectors coincide if and only if they have
the same components.

6. If the sets {€1,€a, -+ ,€,} and {fi,fg, ,fm} are both bases for the
space V, then m = n. This invariant integer is the dimension, dim(V),
of the space.

At this point, you may be looking at the notation above and wondering
about the placement of indices: when are indices placed above, and when are
they placed below? This will made clear in the next part of our discussion.

1.2 Change of Bases, Covariant and Contravariant Transformations

Having defined the concepts of a basis, and the components of a vector with
respect to a basis, we now want to understand how these components change
as we choose different bases, since bases are not unique.

Suppose a vector space V' has two different bases given by {éi,---,¢,}
and {&],---,é.}. Since both sets span V, every vector in {é1,---,€,} can be
written as a sum of {&],---,&.}, and we can define a set of n? numbers a*,
which maps

n
é, = E at e, = a" e, = é at, . (1.7)
p=1

At this point, we've introduced the famous Einstein notation, which just says
that every repeated index should be regarded as being summed over all possible
values. Again, you may be worried about the placement of the indices, but all
be clear as we go along. The final expression is helpful in helping you visualize

the object €’ as a row vector, multiplied by the matrix a*,, where 1 indexes

its rows, anduy indexes its columns.

a*, is clearly invertible: every vector has a unique representation in each
basis, and the map takes the coordinates of any vector in one basis to another,
and so it is certainly a bijective map. We can therefore define (a=1)*, as the

v
inverse map,

v

é;i = (a_l)uuéua (1.8)
with
(a=h)H,a", =64, (1.9)

v

where 0¥ is the Kronecker delta or the identity matrix.



So far, we have dealt with the transformation of the basis. But how does
a general vector transform? Given the transformation between bases above, we
see that for any arbitrary vector Z, which can be written as z”é€,, in one basis
and x'#€, in the other, are related by

e, = ave, = x¥(a e)) = (ak,2")é, (1.10)

r=ux o

or in other words,2
't =at 2. (1.11)

One thing you should notice immediately is that the basis and the coordinates
transform in the opposite way:

— _ -
't =a*,x, e, = (a8,

(1.12)

because of course the vector itself, x’”éﬁ = zt€),, doesn't transform under a
coordinate change at all! Any quantity that transforms under a change of basis
like the basis itself is said to transform covariantly, while any quantity that
transforms like the coordinates, i.e. in the opposite manner as the basis, is said
to transform contravariantly. We will always use indices on the top to indicate
a quantity that transforms contravariantly, and indices on the bottom to indicate
a quantity that transform covariantly.

The best intuition for this comes from imagining a change of basis via rota-
tion in R?, as shown in Fig. 1. Either we can imagine the basis vectors actually
rotating counterclockwise and defining a new set of axes, as we would do in
taking z'V€], = 2’ (a",€,), or equivalently, we can think of the components
of the vector themselves rotating clockwise, with the axes just being relabeled,
which corresponds to 2V €], = (a*,2'")e,.

1.3 The Dual Space

For every vector space V, we can define a dual space V*, which is a set of
linear transformations f : V' — TF, each of which takes in a vector and returns
a number. The functions f are called covectors or one-forms, and you can
convince yourself that V* is also a vector space. Since these functions are linear,
we have

f(@) = fate,) = a" f(en) = 2" fu,

where in the last equality | have defined the set of numbers f,, = f(€,), which
| can construct given the basis {€,} in V. Under a change of basis in V,

fu = f(éu) = f(au;tgé) = ayuf(é‘li) = a’yu 127

where f/, = f(€]) are again a set of numbers that we can construct given the
basis {€,} in V. Notice that under a change of basis in V, f, transforms
covariantly, i.e. in the same manner as the change of basis in V.

Given a basis €}, of V, we can define a dual basis for V'*, which is the set
of covectors ¢** € V* such that

(1.13)

(1.14)

err(ey) = oy (1.15)
This is clearly a basis, since for any f € V*,
@) = 2 f, = 2t £,05 = 2t £,E () = £, (1€, (1.16)
or in other words,
f=fae. (117)

2 Very often, you will see the notation
at, = 0z'"/0x”, which makes total
sense if you look at Eq. (1.11). In fact,
the advantage of writing it this way tells

you how to obtain the matrix a”,,.
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Figure 1: Two equivalent ways to think of a
change of basis. (Top) the basis vectors them-
selves are transformed, or (bottom) the coordi-
nates are transformed in the opposite direction.
These pictures are equivalent.



We should therefore view f,, = f(€},) as the components of f under the induced
dual basis €**.

You should already have a sense that V and V* are very closely related; in
fact, the map €, — € is an isomorphism, i.e. a map of every element in
V' to another in V* that preserves their respective relation to each other under
addition and scalar multiplication.

(End of Lecture: Wednesday 3 Sep 2025)

1.4 The Metric

So far, everything we have discussed has been about vector spaces. We are now
going to turn our attention to inner product spaces over R, where the additional
inner product structure is defined, giving us a way of talking about distances
and angles.

As a reminder, the inner product is a map (-,-) : V x V — R that takes
two vectors in V, and spits out a number. Having chosen a basis {€,,} for our
vector space V, we can now define a quantity known as the metric or metric
tensor g,

G = (€us &) - (1.18)

For R"™, for example, with the inner product given by the dot product, we have
simply g, = 0., while for Minkowski space, the metric is given by3

+1 0 0 0
0 -1 0 o0
=10 0 -1 0 (1.19)

0o 0 0 -1

Knowing the metric fully defines the inner product, since

(7,9) = (at'€u,y"e) = gua’'y” . (1.20)

Moreover, the structure of the inner product also guarantees that g,, = gy, i.e.
Juv is symmetric. Another thing we can note is that as a matrix, g, " = 0
only if ¥ = 0 by the definition of the inner product; this means that g, is
invertible. We can therefore define the inverse of the metric, which we denote
g, with

99" = 9" guo = 04 . (1.21)
For now, this is just a relationship between matrices; we'll come back and revisit
the metric when we have discussed tensors later on.
1.4.1 Raising and lowering indices

Let's look at the expression in Eq. (1.20) more closely. We can reinterpret
(Z,7) = guaty” as (gua*)y”. With this rewriting, can think of (g,,x") as
being the components of the object (Z, -), which takes in a vector ¢ and returns
(Z,9). Infact, (Z,-) is an object in V*, mapping vectors in V' to real numbers,
and can be written as (&, -) = g, z"€*", so that

G € (Y7 Ey) = guaty’ oy, = guaty” = (Z,7) . (1.22)

Clearly then, g,, " are indeed the components of (Z,-) in the basis of V*
induced by our chosen basis of V/, and therefore transforms covariantly.

3 I will generally stick with the mostly mi-
nus convention for the Minkowski met-
ric. My apologies to mostly plus aficiona-
dos, but I'm just slightly more comfort-
able with the mostly minus convention at
this point.



If all that was a bit dense, the upshot is that, starting from a contravariant
quantity x*, we can lower its index by defining

Ty = O (1.23)

which 1) is a quantity that transforms covariantly (and so has a lower index),

and 2) can be contracted with a contravariant quantity to form a real number,

or a scalar or an invariant. Intuitively, it is one half of the inner product: you

need to put together a covariant and contravariant piece to obtain a scalar.
Multiplying Eq. (1.23) by ¢°¥ on both sides, we also find

97z, = ¢° gt = §° guuat = Gzt =27, (1.24)

which shows that | can also raise an index by multiplying by the inverse tensor.
Ultimately, all I'm doing is switching between the components of the two objects

(T,) & T, (1.25)

which are in 1-to-1 correspondence with each other between the isomorphic
vector spaces V and V'*.

Finally, notice that every time we perform a contraction, we sum over one
upper and one lower index. This is because every contraction represents the
pairing of a function in V*, with a vector in V, and results in a scalar. Another
way of understanding this is that you want to pair up a contravariant with a
covariant quantity, so that you end up with a quantity that doesn’t transform,
i.e. a scalar. | have never encountered a situation where you want to sum over
the components of two objects which transform in the same way.

1.4.2 Example: Some Common Metrics

Let’s pause for a moment and take a look at some important examples.

To digest all of this information, let's revisit R? with all of this technology.
R2 is a 2D vector space, with vectors z?€; that look like, for example, 3é, +2¢,,
where 3 and 2 are the components of the vector, and {&,, €y} is a chosen basis
for the space. R? also comes with an inner product, which is the usual dot
product. In R?, we can choose a basis that is orthonormal, i.e. with a metric
given by

9ij = (€3, €)) = & - & = b5 - (1.26)

| can use this metric to raise and lower indices of covariant or contravariant
quantities, so for example

but if you explicitly plug in the indices, you can see that z° = 2 and z! =z,
which shows that the position of indices doesn’'t matter in R™. Inner products
between two vectors can be written in component form as

g,»ja:iyj = scjyj, (1.28)

i.e. the sum of the product of individual components, as in the usual dot product.
You can think of z; as the components of (Z,-). In R?, you can also think of



x; as a row matrix, which maps column vectors (which contain components of
a vector) to numbers by matrix multiplication. ‘
Now let’s consider a basis change, given by €/ = a’,€;, where

j _ [ cos® sinf
@i=—sin® cosf)

where j indexes the row and i indexes the column. This is a clockwise rotation
of the basis vectors by some constant angle 6. Explicitly,

(1.29)

€] =cosfé; —sinféy,

€y =sinf &y + cosf e . (1.30)

At the same time, for any vector & = z€;, the coordinates x* transforms in the
opposite sense, i.e. 2/t = (a‘l)zjxj, where

_1vi _ [cosf —sinf
(@) = (sin@ cos > ’ (1.31)
so that
2"t = cosfz! —sinf 22
z'? =sinfa' + cosha?, (1.32)

which is instead a counterclockwise rotation of the components.* You can check
that the vector itself, z?€;, remains unchanged. This is the same intuition we
had from Fig. 1.

We now graduate to something hopefully still familiar, but a little more
nontrivial: 4D Minkowski space, where the 0-dimension is time, and dimensions
1,2,3 are spatial dimensions. The vectors that live in this space are called 4-
vectors, and they are of the form z#€),, where {€), €1, €5, €5} forms a basis.
Once again, we have an inner product and an associated metric; we can choose
a basis such that the metric is the Minkowski metric

M = (€3, €5) , (1.33)
where
+1 0 0 O
Nuw = 8 _01 _01 8 (1.34)
0 0 0 -1

You can verify for yourself that n*”, the inverse of the matrix, has the same
entries as 7.

Once again, | can lower indices by hitting a contravariant quantity with the
metric, e.g. T, = 71, ", but this time, you can see that g = 29, and z; = —zt.
Therefore, the position of the indices does matter in Minkowski space, and we
need to be a little more careful.’> You can still think of z,, as the components
of (Z,-), but x,, is now no longer just a simple transposition (i.e. a row matrix)
relative to z* (which we can view as a column matrix); you also need to change
the sign of the spatial components. Inner products can be written, as before, as

g;wx”y” = l‘uy” ) (135)
but note that because of the negative signs in the metric, you are no longer
guaranteed that the inner product is positive.

* What may be confusing is that

Eq. (1.30) and Eq. (1.32) look identi-
call' But how we interpret what's hap-
pening is different. In the first, each line
tells us how each basis vector is sepa-
rately rotated, so you're looking out for
€1 transforming into something else. But
in the second, it is the transformation of
the arrow denoted by (z!,22) going into
(21, 2"?) that we are interested in.

5 In the wild though, some people freely
mix upper and lower indices even in
Minkowski space, which is possible with
a little extra care. | usually prefer not to
do this.



We can again consider basis changes such as the Lorentz boost, given by
€, = A" €,, where for example

vy By 00
py v 00
—
M=o o 1 0" (1.36)
0 0 0 1
where |3 < 1 and v = (1 — 8?)~'/2. Under this transformation,

€ =€ + e

& = Préy + e

& = &

& —é,. (1.37)

On the other hand, the coordinates transform as 2 = (A~")” a#, where

v =By 00
—1\v _ 76’7 Y 0 0
0 0 01
i.e.

QL'/O _ ,71,0 o 67‘%1

2t = By + yat

22 = 32

2" = a3, (1.39)

(End of Lecture: Monday 8 Sep 2025)

1.5 Tensors

We have now seen vector spaces and their dual spaces. We can now start
defining even more general objects by putting vector spaces and dual spaces
together!

Consider three vector spaces U, V and W over F. We can define the
tensor product of spaces such as V@ W, oreven UV @ W.

1. It is distributive, i.e. fora € U and £ € V,

Il
Q
8

+ r+ad®
(9 QT+0R®

SRy
8 <

/) 7
Z ; (1.40)

S 8y
I

ST

Sl

a® (
(@+

)

2. It is associative, so that we can chain together three vector spaces
like U ®V @ W without worrying about whether it's (U® V)W
or U® (VeW),

3. It commutes with F, i.e.
MA@ T)=(\d) @F=dR (\T), (1.41)

but it is not commutative over the vectors, i.e. @ ® b =£ 5@ ain
general.




Consider a vector space V' with a basis {€,}. This basis induces a basis in
tensor products of V' and V* in the natural way; for example, in V* ® V*, this
induces the basis €** ® €*”. These basis vectors act on pairs of basis vectors,
(Ew, €), in the expected way, so for our V* @ V* example, we get

e @ e (€, €p) = 0405 . (1.42)
It can also act on elements of V ® V' in a manner that you might also expect:
€ @ e (En ® €p) = 0h0j - (1.43)

A good example of what a tensor is and what it does is the metric itself, which
we often refer to as metric tensor. It is a tensor in V* ® V*,

g=guwe e, (1.44)

It acts on pairs of vectors & and g and returns a number in F:

—»

g(Z,1)) = g™ ® & (2%Ca,y’E8) = gy 0105 = gy’ = 2y, .
(1.45)

As with vectors and covectors, once we've picked a basis, we will only need to
worry about the components, with the understanding that the object itself is
specified by both the components and the basis, and that the spaces act in the
natural way that you expect.
Under a change of basis {€},} — {€],}, the metric itself undergoes a trans-
formation:
Guv = G = (€, 8)) = (a7,85,07,6)) = a” ", gox - (1.46)
Each lower index is acted on by the change-of-basis transformation, with each
transformation given by a covariant transformation. We say therefore that g,
a doubly covariant tensor, which explains why we often also refer to g,, as
the metric tensor. You can see now that we can look into objects with more

general number of indices, say Qaﬂwe, which transforms as

Qlaﬂ'ﬂ;e = (a_l)aa’ (a_l)ﬂﬁ’a”y 'ya’6 50/6 eQa 7 y''€ (147)

which is a doubly contravariant, triply covariant tensor, or a type (2, 3) tensor.
The total number of indices is what we call the rank of the tensor. Notice how
when we were writing down the transformation of QO‘BV&, the indices lined up:
we contracted upper indices with lower indices, so that under each application
of the change-of-basis transformation, upper indices remain upper indices.

Another thing you will notice is that | have been very careful with the relative
positions of the tensors. This is good practice, but very often you'll find people
get sloppy and collapse all the indices when they think the notation is obvious.
The one tensor where this is always okay is the Kronecker delta d¥, since we
always have this tensor returning 1 if 4 = v and 0 if u # v regardless of the
position of the indices.

1.5.1 Tensor algebra

So what can we do with tensors? Well, we can add tensors together, but we
have to ensure that you're adding things that are transforming with a change
of bases in the same way. So for example

A/LV)\ = Bl”—u)\‘r + C“l/)\ (148)



is legal, but

Ar L\ "ZE BT+ Ot +DF (1.49)

vAoo

makes no sense.

We can multiply tensors together. Suppose we have tensors A" | and
B" ., which are tensors of type (1,2) and (1, 3) respectively. Then, we can
multiply them together to get

C‘XB = AauABﬂpUT ) (150)

vApoT

which is a tensor of type (2,5).
You can also contract indices, or equivalently, multiply tensors by the metric,
so that for example

Caﬁa,@po‘T — gaAgBMC)\,u.a/ij‘r (151)

is now a tensor of type (0,3). Contracting two vectors is a special case that
leads to a real number, also called a scalar or sometimes an invariant, which
does not transform under a change of basis. Let me stress again: you must
contract one upper and one lower index! You can write down objects like B3,
but these objects are not tensors. Notice also that free indices (indices that are
not contracted) on the left and right sides of an equation must match, to tell
you which components of the tensor you're talking about consistently.

At this point, you've seen a lot of index notation—how to raise and lower
indices, how to contract indices and so on, and what these operations mean.
Let me summarize by giving you some golden rules of index notation:

s a

1. Free indices (indices that are not summed over) must agree on
both the left-hand side and the right-hand side of any equation.

2. Indices that are not free should be contracted in pairs, with one up-
per and one lower index (unless in R™, where the position doesn't
matter).

3. Contracted indices can always be relabeled, since they are dummy
indices.

4. There should never be more than two of the same index appearing
in a term formed by the product of a bunch of tensors, vectors
etc. If this happens to you, it is likely because sum of the indices
are supposed to be contracted in a sum. Relabel your contracted
indices!

1.5.2 Example: Rotations and Lorentz transformations

Let's study the properties of basis transformations a*, that leave the metric
invariant. In R"™, these are the transformations such that angles and lengths are
all preserved. Under the transformation a*,,, the metric tensor transforms as

v a”uaAVgUA , (1.52)
Transformations O that leave the metric invariant are therefore of the form
O”#gMO’\V = Guv - (1.53)

In R™, if we start with the canonical metric g, = d,, then these transforma-
tions must satisfy

07,0530, =6,y = 0*,0,, =0, = (071),}=0",. (L54)

10



Therefore, as matrices, we must have O~1 = OT. The set of all such matrices
is the orthogonal matrices, which can be thought of as a group called O(n),
called the orthogonal group.® This group is made up of matrices corresponding
to rotations and reflections. The group containing matrices corresponding only
to rotations is called the special orthogonal group, SO(n).
In Minkowski space, we have instead

A% oA, = 1 (1.55)
The A matrices also form a group that we call the Lorentz group, O(1,3)
for spacetime. The set of all Lorentz transformations (both boosts and spatial
rotations), as well as time reversal and reflections, make up this group. Again,
the group with just boosts and rotations is called SO(1, 3).

1.5.3 Example: Linear transformations

In the crash course in linear algebra, | mentioned the concept of linear transfor-
mations briefly. Let's linear transformations M : V' — V', mapping vectors in a
vector space V over a field F to other vectors in V. The linear transformation
must satisfy the following property:

MAZ + i) = AM(&) + M () (1.56)
forall Z, 4/ € V, and A\, u € F. This object exists independently of any basis, but
given a basis, it can be represented by a matrix M*,, obtained by examining
the action of the transformation on the basis vectors:

M(e,) = M",é, . (1.57)

Suppose M acting on some arbitrary vector & = z/€, gives the result § = y”¢€,,.
We can see however that

y=1y"€, = M(aV'e,) = a"M(E,) = M”Mx“é},, (1.58)
or in other words, the components transform as
y" =M, z". (1.59)

We can therefore see that given a basis, M behaves just like matrix multiplica-
tion, as we already knew to be true from linear algebra.

—

In another basis related to the old one via €, = a? €’, we see that

M(e,) = M", e, =M", a’, el , (1.60)
but also
M(E,) = M(a*,&) = a*, M (&) = M(&) = (a”")"\M(&,). (1.61)
Therefore, in the new basis,
M(&) =a’,M", (a"")" ., (1.62)
i.e. under the change of basis,
M+ a®,M", (a1, (1.63)

which is the transformation rule for type (1,1) tensors, and also what you may
be familiar with in linear algebra about the change of basis of linear transforma-
tions.”
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Compare this with the transformation rule for the metric tensor,

Guv = (a’il)ap(ail))\ygoﬂ ) (]‘64)

and you'll notice a big difference! And that's because the metric tensor is a type
(0,2) tensor. The key lesson here is that 2D tensors are much more than just
matrices; while it can be useful to write out tensor components as matrices, one
needs to keep in mind that tensors also come equipped with a transformation
rule!

1.5.4 Invariants of 2D tensors

Invariants are extremely useful: they don't transform under a basis change, and
so they're very easy to deal with. They're also giving you information about the
tensor that is independent of the basis. The first commonly discussed invariant
of 2D tensors are the determinant, which you can compute from the matrix
representation of the tensor; we will discuss this in much greater detail after
we've built up some machinery to discuss it. The second invariant is called
the trace. In matrix language, this is simply the sum of the terms along the
diagonal. It's hard to understand how this could be an invariant from the matrix
perspective, but in terms of indices, it is simply given by

tr(M) = " My, = g0 MM = 8" M*, = M*,, (1.65)

where I'm showing you how to obtain the trace for 2D tensors of all types.

(End of Lecture: Wednesday Sep 10 2024)

1.5.5 Symmetric and antisymmetric tensors

A tensor is said to be symmetric in some indices if the tensor values are the
same when the two indices are swapped. For example, we say that S*” is a
symmetric tensor if S#¥ = S¥#*. Note that we have also

S*, = guaS"* = gua S =S, (1.66)

and so the position of the indices doesn't matter in determining whether a tensor
is symmetric or not. Moreover, under a change of basis,

5" = a0 S = a® ,aP 57" = 55 (1.67)

and so a symmetric matrix stays symmetric under a change of basis.

We can similarly define a tensor to be antisymmetric in some indices if,
under a swap of the two indices, the tensor picks up a minus sign, e.g. A" =
—AYF. Again, a tensor that is antisymmetric when indices are in one position
are still antisymmetric if the indices are raised or lowered; they also remain
antisymmetric under an arbitrary change of basis.

The contraction of a symmetric and an antisymmetric tensor is always zero,
since e.g.

Sy AR = 8, A = —8,, A = —5,, A" =0, (1.68)

where in the second last step | have simply relabeled the contracted indices
(since they are dummy indices), and noted that S, A*” is equal to its negative,
and therefore has to be zero.
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Every tensor can always be decomposed into a symmetric piece and an
antisymmetric piece. To see this, take an arbitrary tensor B*”. We can always
rewrite this as
v_ 1

2
where S#” = (B" 4 BY"*)/2 a symmetric tensor, and A" = (B* — B¥#)/2
is antisymmetric.

1
B (B" + B") + 5(B" — B") = §" 4 AW, (1.69)

1.5.6 Kronecker and Levi-Civita tensors

We'll now discuss two special tensors that arise very commonly in tensor algebra.
The first of them, the Kronecker delta ¢#, is defined as a (1,1) tensor that,
in some basis, is unity if 4 = v and zero otherwise. Let's check what happens
under an arbitrary change of basis:

S (A ak 6% = o (1.70)
In other words, the Kronecker delta always has the same numerical components
in all coordinate systems.® °

The Levi-Civita symbol ¢, ,;,...,.,, is defined as an object with n indices such
that €12.., = 1, and €...; ..4,... = —€ ..., i.e. every time two indices are
exchanged, the result differs by a minus sign. This definition guarantees that
when two indices are equal, the Levi-Civita symbol is zero. One particularly
important use-case of the Levi-Civita symbol is in expressing antisymmetric
quantities in component form. For example, the cross product @ x b can
be written as

-,

(@x by = Eijkaibj . (1.71)
The determinant of an n x n matrix M can likewise be written as (assuming
summation over repeated indices)

Eltl"'/tndet(M) = 6”1"'VW,MV1 S M )

H1 Hn

(1.72)

or

1
det(M) = —e ey oy MY, o M
n!

n H1 Pn

(1.73)

Let's suppose there is an n-dimensional tensor 7,,, ,,....,, Whose components
coincide with €,, ..., in one particular basis. Then under a change of basis,

V1 ...q¥n
n#l"'#n, —a /Lla M a n

= €y, det(a) =1y, .., det(a) .

€vi-vp

(1.74)

We see that the Levi-Civita symbol is almost a tensor whose components do
not transform, up to a pesky determinant.

At this point, let's examine the determinant of the metric tensor itself, g =
det(g,,). We see that under the same transformation, the determinant after
the change of basis is

g = det(g;“,) = det(a/\#a"l,gAg) = (det(a))?g, (1.75)

and therefore the quantity +/|¢’| = |det(a)|\/|g|; note that the absolute value
is important, since the metric tensor can have negative determinant (e.g. in
Minkowski space!). Now let's consider the object

Cpaipopn = V |g|€M1#2“'#n (1'76)
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a minus sign under reflection.



Under the same transformation, we now see that provided det(a) > 0, which
are referred to as orientation preserving changes of basis,*°

Eprepn — V |gldet(@)en, o, = V19 €01 s (1.77)

and so once again, we find a tensor known as the Levi-Civita tensor ¢, ...,,,
that always has the same form in any basis (although we must evaluate the
determinant of the transformed metric, which is in general different for each
basis).

If we limit ourselves to rotations in R™ and boosts (and rotations) in Minkowski
space, then e, ..., = €u,...,, is @ good old tensor. However, if we include trans-
formations like reflections, for example, then we need a lot more care.!!

Let's circle back and show that the determinant is indeed an invariant under
a change of basis. We have

1
N — K1 fn vy e vy,
det(M') = Cvpoy MY, M

1. _ _
:meﬂl #neul-uyn (amm (a 1)V1p1Mp10'1 . aanun(a l)yn[)n,Mpn(Tn)

1

——q°t ...q%n R e Y N P A 1<
—n'a M1 a“une ﬂ(a ) P1 (a )npn’slfl""/n

x MPt oo MP
o1

On

1, . )
:me 1 "det(a)épl,,,pndet(a 1)Mp1<71 o MPn

—det(M), (1.78)

On

since det(a)det(a™1) = 1.

1.5.7 Isotropic Cartesian tensors

Another special tensor that we'll now discuss is the isotropic, Cartesian tensor.
Consider a Cartesian coordinate system with orthonormal basis vectors, so that
gi; = 0;;, the Kronecker delta function. We looked at the set of orthogonal
matrices form what we called O(n), which are matrices with the property that
O~! = OT. When we perform a change of basis under these matrices, we found
that this leaves the metric invariant, since

g = 00785 = 0,07, = OL,07, = 6. (1.79)

You can check that the same thing is true for products of d;;, for example
Tijklmn = 5ij6kl5mn-

What is the most general form a tensor of rank m that is invariant under an
O(n) transformation? These are important questions that have tedious answers
to them, and so we won't try to prove these results (see for example Ref. [1],
but rather just state them. The most general O(n) invariant tensor of rank 4
Iijr is

Ty = adij6rr + Boirdiy + 70l (1.80)

for some numbers «, 8 and 7.

How about for SO(n), which is simply all the orthogonal matrices with
determinant 1, corresponding to just rotations, and not reflections? We can
check, for example, that €;; is invariant under an SO(3) transformation O,
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since

= OilemOkneijk

= elmndet(O)

= €lmn ;s (1.81)

/
€lmn

since by definition, an SO(n) matrix has determinant 1. With this, it's not
surprising that, for example, the most general SO(4)-invariant, rank-4 tensor
Jijk:l is

Jijkt = 00i;0k1 + B6idjk + ¥0i105k + Neijni -

1.5.8 Irreducible 3D Tensors Under Rotations

Let's start from the vector space V = R over the field R, corresponding to our
usual intuition of 3-dimensional vectors, with an inner product given by the usual
dot product. Consider T};, the components of a rank-2 tensor in V*®@ V™. Let's
consider how T;; transforms under rotations, i.e. under SO(3) transformations.
We can write down the transformation law

Tij — Ti/j = OkiOlekl . (182)

We saw, however, that we can always split T;; into symmetric S;; and antisym-
metric parts A;;, i.e. T;; = Si; + A;j, where

1
Sij = 5 (Tij + Tji)
1
Ay = §(Tij —Tj;). (1.83)

We also showed that under any change of basis, the symmetric part remains
symmetric, and the antisymmetric part remains antisymmetric. Intuitively, we've
split the vector space V* ® V* into two subspaces, one containing symmetric
tensors and the other containing antisymmetric tensors, and every element in
V*®V™* can be written as a sum of elements from these two subspaces. Elements
in each subspace don't mix under SO(3) transformations: symmetric tensors
stay symmetric, and antisymmetric tensors stay antisymmetric.

Let's take a closer look at A;;. The diagonal components are all zero, i.e.
Ay = Aoy = Azz = 0, by the definition of antisymmetry. Since A1o = — A2,
A3 = —Aszp, and Apz = —Ajzs, we really only have 3 independent compo-
nents. This is suggestive, because a vector in R3 also has three independent
components; is A;; secretly similar to a vector? The answer is yes! Let's define
Bk = €% 4;;, or equivalently

1 k
You can think of this as stacking up (A3, A31, A12) into a vector. We can
check that By, transforms as a vector, since we know that €% is invariant under
an SO(3) transformation, i.e.

EijkAij — EijkomiOnjAmn . (]‘85)
Recalling that
eijkomionjopk — 6mnpdet(O) = mnp (]_86)

where we've used det(O) = 1 for special orthogonal matrices, and that in matrix
form OTO =1, we also have

ePO™,0"; 07, (0T)1, = €710™;,0"; = (OT)7,e™"P. (1.87)
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Putting everything together, we find

B = €% A; s (OT)F €™ Ay = (OT),BP (1.88)
which is precisely how a contravariant vector component should transform.

Let's take stock. We've shown that any element in V* @ V* can be written
as a sum of an symmetric tensor, and an antisymmetric tensor, which is secretly
a vector. Under a change of basis, each part—the symmetric tensor and the
vector—transform into another symmetric tensor and a vector respectively, with
no mixing of the subspaces.

The symmetric tensor, it turns out, can be broken down even more. Let's
write

Sii = 300+ (Si5 = 20) (1.89)

where s = S, is the trace of S;; (remember that metric here is simply d;;).
Under an SO(3) rotation, the first term remains invariant, since orthogonal
matrices leaves the Kronecker delta Euclidean metric invariant, and the trace
s is a scalar and also invariant. The second term transforms nontrivially, but
evaluating its trace, we find

67 (815 — g%«) =s— % L8195, = 0.

Since any trace is a scalar and an invariant, under any change of basis, S;; —
(s/3)d;; always remains a symmetric, traceless tensor. This object has five
degrees of freedom—a symmetric tensor has 6 degrees of freedom (S11, So2,
S33, S12, S13, S23), and imposing the traceless condition removes 1 degree of
freedom.

We have just shown that any rank-2 tensor T;; in Euclidean R3 can be
decomposed as

s 1 .. s
rfij = 551] + ieljkBk + (SU — §6l]> o (190)

into a scalar, vector and symmetric traceless tensor respectively, with each piece
transforming separately under an SO(3) rotation, so that

5 1 .. 5
Tij = Tj; = §5¢j + ifkal/q + (Sz{j - gfsij)

S 1, S
= géij + 56 ]kOlkBl + OkiOlj (Skl — gékl) . (1.91)

The scalar, vector and symmetric traceless tensor are all examples of irreducible
tensors, i.e. they cannot be decomposed any further into smaller subspaces that
transform independently under SO(3), something which | didn't prove, but is
true. Very often, noting that Tj; lives in the tensor product of two vector spaces,
people write this as

303=16365, (1.92)

where 1 standing for the irreducible scalar, 3 for the irreducible vector, and
5 for the irreducible symmetric traceless tensor. This decomposition is very
useful: very often, you can analyze each part separately, simplifying the problem
significantly.

There's a lot more to be said about tensor decomposition, irreducible tensors
and their applications in physics, but a thorough exploration of this will touch on
group theory and representation theory, which we will not discuss in this course.

(End of Lecture: Monday Sep 15 2024)
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